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Preface

The present volume contains the first part of the author’s dissertation for the dr. polit. degree
at the Institute of Economics of the University of Oslo.

In total, the dissertation consists of an introductory overview and three accompanying essays.

The first essay — entitled «The barely revealed preference behind road investment prioritiesy»
and co-authored by Rune Elvik — has been published in Public Choice 92: 145-168 (1997).

The second essay — entitled «Measuring the contribution of randomness, exposure, weather,
and daylight to the variation in road accident counts» and co-authored by Jan Ifver, Siv Inge-
brigtsen, Risto Kulmala, and Lars Krogsgard Thomsen — can be found in Accident Analysis
and Prevention 27: 1-20 (1995). This paper is based on the report « Explaining the variation in
road accident counts», by the same authors, issued by the Nordic Council of Ministers (Nord
1993:35).

Both of these essays are reprinted, with the kind permission of Kluwer Academic Publishers
and Elsevier Science Ltd, respectively, in this Volume I, which also contains the introductory
overview.

The third essay — entitled «An econometric model of car ownership, road use, accidents, and
their severity» — is by far the largest, and printed in a separatc Volume II (TQI report
457/1999).

Oslo, November 1999
INSTITUTE OF TRANSPORT ECONOMICS

Knut @stmoe Marika Kolbenstvedt
Managing Director Head of Department
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Introductory overview

Aim, motivation, and dissertation outline

Object of study

The present dissertation is concerned with road transportation in Norway, as seen in a primar-
ily economic perspective, and examined by means of econometric methods.

Our principal focus is on the accident generating process, its determinants, and its conse-
quences.

The accident generating process is closely linked to the mobility pattern in general and to road
travel demand in particular. As a background for understanding this process, but also because
the topics have considerable interest per se, we examine car ownership and road use demand
relations, their interrelationships with road infrastructure supply, as well as the decision pro-
cess determining the characteristics of this infrastructure.

A wide perspective on accidents and road use

To understand the accident generating process, it is — in our view — necessary to adopt a fairly
wide perspective, paying attention to the many natural, technological, social, political, and
economic background factors that have a bearing on the road accident toll.

It might be fruitful to distinguish between six broad categories of factors influencing accident
counts.

First, accident numbers depend on a number of truly autonomous factors, determined outside
the (national) social system, such as the weather, the natural resources, the state of techno-
logy, the international price of oil, the population size and structure. These are factors that can
hardly be influenced (except perhaps in the very long term) by any (single) government, no
matter how strong the political commitment.

Second, they depend on a number of general socio-geographic and economic conditions,
some of which are — in practice or in principle — subject to political intervention, although
rarely with the explicit purpose of promoting road safety, nor — more generally — as an in-
tended part of transportation policy. Such factors include industrial development,
(un)employment, disposable income, consumption, taxation, inflation, public education, etc.

At a third level, the size and structure of the fransportation sector, and the policy directed
towards it, obviously have a bearing on accident counts, although usually not intended as an
element of road safety policy. Under the assumption of constant risk, the accident frequency is
— by definition — proportional to the amount of exposure, as measured, e g, in terms of vehicle
or persor. kilometers (i e, road use). Aggregate road use is, however, in our perspective not an
exogenous factor; it is the result of innumerable choices made by individual private consu-
mers, households and producers. These choices are — in turn — conditioned by certain long-
term, asset ownership decisions made by private individuals, which result in a certain number
of driver’s licenses, a certain size and structure of the vehicle pool, and a certain spatial distri-
bution of residence and employment. Moreover, short-term as well as long-term individual
decisions are influenced by certain public policy variables, concerning, e g, public transporta-
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tion level-of-service and fares, the level of fuel and vehicle taxation, and road infrastructure
supply.

Fourth, accident counts are susceptible to influence — and, indeed, influenced — by accident
countermeasures, i € measures intended to reduce the risk of being involved or injured in a
road accident, as reckoned per unit of exposure.

Fifth, the accident statistics depend, of course, on the system of data collection. Accident un-
derreporting is the rule rather than the exception. Changes in the reporting routines are liable
to produce fictitious changes in the accident counts.

Finally, accident counts, much like the throws of a die, are strongly influenced by sheer ran-
domness, producing literally unexplainable variation. This source of variation is particularly
prominent in small accident counts. For larger accident counts, the law of large numbers pre-
vails, producing an astonishing degree of long-run stability, again in striking analogy with the
dice game.

Three essays

The present dissertation, which — in addition to this introductory overview — consists of three
essays, is an attempt to understand and analyze road use, accidents, and road infrastructure

formation in such a wide perspective.

In essay 1 — «The barely revealed preference behind road investment priorities», co-authored
by Rune Elvik — the objective is to explain the ranking of investment opportunities compiled
for the four-year National Road Plan 1990-93 by the regional offices of the Public Roads Ad-
ministration. This essay is fairly narrow in scope, in that it covers only a certain part of a deci-
sion process determining a limited set of conditions confined to the third level in the above
list, i € to the transportation sector.

Of particular interest in this analysis is whether road investment decisions are governed by the
objective to maximize total user benefit within a given budget constraint, in which case one
would expect to find a highly significant coefficient for the benefit/cost ratio of an investment
project. Assuming that this is the leading principle of road investment priorities, one might
expect infrastructure improvements to have a comparatively strong influence on mobility and
economic growth, and hence — potentially — on the accident frequency. If, on the other hand,
road infrastructure improvements are primarily motivated by safety concerns, one might ex-
pect such improvements to bring the risk level down, while leaving exposure (mobility) more
or less unaffected. The end result of this would be a decrease rather than an increase in the
accident frequency.

In essay 2 — «Measuring the contribution of randomness, exposure, weather, and daylight to
the variation in road accident counts», co-authored by Jan Ifver, Siv Ingebrigtsen, Risto Kul-
mala and Lars Krogsgard Thomsen — the main purpose is to assess the importance of certain
factors that are normally not controllable by policy makers. Some of these factors, such as
weather and daylight, belong at the uppermost level in the list above, while exposure clearly
belongs at the third level and randomness at the sixth. Many of these factors, although fre-
quently ignored in traffic safety analyses, have potentially a very strong influence on accident
‘counts. Our intent is to measure just how strong.
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Only after all these uncontrollable factors have — so to speak — been «controlled for», can one
interpret changes in the accident rate as attributable to the primary policy variable of interest —
accident countermeasures. In other words, even if weather, daylight, randomness and expo-
sure are not susceptible to influence by traffic safety policy measures, the identification and
estimation of their effects is clearly policy relevant.

In essay 3 — «An econometric model of car ownership, road use, accidents and their severity»
— we carry the analysis of road accident counts much further, by estimating relations for ag-
gregate car ownership, overall and heavy vehicle road use, rural and urban seat belt use, and
injury accident frequency and severity. That is, rather than considering exposure as (exoge-
nously) given, we attempt to estimate its determinants. In so doing, we take a further step
back in the chain of effects, estimating the determinants of car ownership as well, since the
latter variable is a predominant factor behind mode choice and travel frequency decisions.

For input into the road use and accident frequency equations, we develop an econometric
method to estimate exposure (overall and heavy vehicle kilometers) from a combination of
traffic counts, fuel sales statistics, fuel prices, calendar data, weather conditions, and vehicle
pool characteristics. ‘

In this essay, unlike most safety analyses, we consider dependent and independent variables
belonging to all the six levels identified in the previous section.
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Economics, econometrics, transportation,
and road safety

Economic and econometric analyses have a long tradition within the field of transportation,
but a rather short history of application within accident analysis and prevention.

Transportation is a sector characterized by frequent market failure and multiple externalities,
of which accidents are but one. Examples from transportation has inspired a number of lead-
ing economists to develop theories and methods that have later acquired a much wider area of
application. Using the example of a bridge, Dupuit (1844) was probably the first economist to
rigorously analyze the efficient pricing of public goods. Pigou (1920) and Knight (1924) de-
veloped their theory of externality taxation using the example of a congested road. Coase
(1960) used the problem of sparkles from a railway to discuss property rights in relation to
externalities.

Even certain parts of the econometric toolbox have emerged largely in response to the needs
of transportation research, being brought forward by analysts with a prime interest in this field
of application. Most clearly, this is the case of disaggregate discrete choice modeling, to
which McFadden (1974, 1978, 1981) is generally considered to have made the single most
important methodological contribution. Such modeling has become the cornerstone and lead-
ing paradigm of travel demand analysis, among planners and practitioners as well as for theo-
rists (see Ben-Akiva and Lerman (1985) for an excellent introduction).

The use of econometric methods for the purpose of accident analysis is much less common,
and by no means essential to the development of econometrics. We are, however, going to
argue that although econometrics was originally developed as a toolbox for economic re-
search, it may — in a sense — be even better suited for accident analysis.

Road accidents as an externality

It is generally acknowledged (European Commision 1996, Maddison et al 1996, Verhoef
1996, Nash 1997) that road transportation is an activity characterized, at least occasionally,
by particularly large external costs.

Such externalities may include accidents, environmental effects, noise annoyance, congestion,
and road wear. However, it should be kept in mind that these costs are generally not external
in their entirety.

The issue of road accident externalities has been the subject of several important studies in
recent years. A common theoretical finding resulting from these studies is that the external
accident cost of road use is a function of the marginal relationship between road use and acci-
dents, as expressed, for instance, by the elasticity.

However, very few studies provide well-founded empirical evidence as to the (range of)
value(s) of this elasticity. In the words of Newbery (1988:171),

«The key element in determining the accident externality cost is [...] the relationship between
traffic flow and accident rates, where the evidence is sketchy, to say the least.»

10
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An interesting question is thus whether accidents and accident victims tend to increase more
or less in proportion to the traffic volume, in other words if the elasticity of casualties with
respect to road use is smaller than, equal to or perhaps larger than unity. Is this elasticity per-
haps not constant, but depending on the level of traffic density or «saturation»? Since, in an
«unsaturated» traffic environment, the number of possible two-party conflict situations may
be thought to increase in relation to the square of the number of vehicles on the road, one
might irnagine an elasticity much larger than one in the early phase of the automobile era.
Newbery (1988) argues that, in such a case, there would be an externality involved which is at
least as large as the total cost of the accident.

As roads become crowded, however, traffic density is bound to affect driving behavior, nota-
bly speed, thus forcing down the number of conflicts, or at least the severity of their outcome.
Where on this curve are we? This is an empirical question that can only be resolved by means
of appropriate econometric analysis, allowing for explicitly and estimably non-linear relation-
ships.

In extending this line of reasoning, one may identify four rather intriguing questions: (i) Are
we approaching the stage at which the accident externality generated by the marginal road
user is zero or perhaps even positive, on account of the marginal road user’s contribution to
congestion and hence to speed limitation? (ii) Or are we, perhaps, in some heavily congested
regions even at a stage where the fotal marginal accident cost (external and internal) of road
use is approaching zero? (iii) Is this (one of) the reason(s) why accident counts in north-
western Europe generally have kept falling since the early 1970s, in spite of increasing road
use? (iv) Is there, perhaps, some kind of trade-off between congestion and accident external-
ities, the sum of the two being less variable than either, since congestion tends to reduce acci-
dents and/or their severity?

If such & «substitutability» between externalities exists, it has important implications for pol-
icy. Efforts to relieve congestion may entail not nearly the same social benefit as if these two
externalities were not related, perhaps — depending on the relative values attached to time
savings versus life and health — no benefit at all.

In essay 3, we estimate the partial elasticities between road use and injury accidents of vary-
ing severity. Using a pooled cross-section/time-series data set, we are able to identify separate
exposure and traffic density effects and estimate their strength. Relying on a Box-Cox regres-
sion model (Box and Cox 1964), we are even able to estimate the form (curvature) of the re-
lationship between injury accidents and exposure/density. The analysis reveals that there is
probably a large accident externality generated by heavy vehicle road use, but that the mar-
ginal external accident cost of private car use is quite small, perhaps even negative.

Risk compensation in an economic perspective

Perhaps the most intriguing issue of accident and safety analysis over the last couple of dec-
ades is the question of risk compensation, sometimes referred to as behavioral adaptation or
offsetting behavior.

11
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In a narrow sense, risk compensation occurs when a decision maker perceives some exoge-
nously determined increase in risk taking place, and changes his behavior so as to counteract,
to a smaller or larger extent, this initial risk increase by an enhanced safety effort.

In a broader sense, one may refer to risk compensation, offsetting behavior, or behavioral ad-
aptation, as the decision-maker’s response to any exogenous change in risk, positive or nega-
tive, i e regardless of the direction of initial change. In the sequel, we shall be using the term
risk compensation in this broader sense.

Few studies have aroused more controversy than the seminal paper by Peltzman (1975), who
concluded that the vehicle safety design standards promulgated by the US National Highway
and Traffic Safety Administration had done nothing to reduce the highway death rate. These
regulations, which were imposed during the 1960’s, required that new cars be equipped with
(i) seat belts for all occupants, (ii) energy-absorbing steering column, (iii) penetration-resistant
windshield, (iv) dual braking system, and (v) padded instrument panel.

Peltzman (1975) regressed road fatalities on a set of variables assumed to affect risky driving
over the preregulatory period 1947-65, used this regression to predict traffic death rates for the
postregulatory period 1966-73, and then compared the actual and predicted death rates. He
found that while car occupant death rates had decreased by nearly 10 per cent, non-occupant
death rates were up by some 30 per cent, leaving the overall death rates largely unaffected.
Peltzman’s interpretation was that drivers had reacted to the regulation by substituting «driv-
ing intensity» for safety. Although this behavioral adaptation was not large enough to com-
pletely offset the initial (engineering) effect on car occupant safety, it adversely affected pe-
destrians, who had not benefited from any initial safety improvement.

At about the same time, a similar but even more radical hypothesis, developed from a psy-
chological angle, was put forward by Wilde (1972, 1975, 1982). According to his theory of
risk homeostasis, the road user endeavors to maintain a constant (target) level of risk. A sub-
jectively perceived initial increase in risk (or safety) will always induce the road user to adjust
his behavior in such a way as to keep the final risk at the target level, i e constant.

In other words, not only does risk compensation always occur, it is also 100 per cent effective,
in the sense of exactly neutralizing any extraneous changes in subjective risk. If this is true, it
follows that all policy measures aimed at reducing the accident rate are bound to fail, unless
they (i) attack the target level of risk, i e make the road users want another risk level, or (ii)
are not (fully) perceived by the road users.

At the other extreme, the traditionalist (engineering) view would be that behavioral adaptation
does not (by and large) take place, in other words that the total (final) safety effect is (ap-
proximately) equal to the engineering effect.

Is this a natural topic of research for economists? It certainly is.
Consider a utility maximizing road user whose utility function has only two arguments —
speed (s) and accident risk (P):

U=U(s,P).

Assume that the marginal utilities of speed and risk are positive and negative, respectively,
and that the accident risk depends on speed, as well as on some exogenous risk or safety fac-

tor x:

12
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F=P(s,x)
The indifference map of this road user is depicted in figure 1. Utility is increasing as we move
in the south-east direction. In the initial situation, the exogenous risk factor is fixed at x =x,,
and the road user maximizes his utility by driving at speed s,, obtaining risk level .

Risk (P)
Accidents per vehicle km
Pes, x| x=x,);
' P(s x| x=x,)

i .
s ’
. 4

P, / —— Indifference curves

------ Risk functions
P3 __". /'-,.-'

Speed (s)
kms/h

$1

Figure 1 Indifference map of a road user

Now, suppose that the exogeneous risk factor decreases from level x, to x,, shifting the
P(s, x) curve to the right. In this situation, speed level s,, now resulting in risk level A, is no

longer optimal. A much higher utility can be achieved by choosing speed level s,, the new
utility maximizing choice. Depending on the form of the indifference curves and on the func-
tion P(s, x), the resulting risk level P, may be lower than, equal to,or higher than the initial

level A.

This simple example serves to illustrate the more general idea, that the trade-off between risk
and other utility components, such as travel time savings, excitement, or effort, is no different
in essence from the trade-off between consumer goods made by a utility maximizing individ-
ual. In response to an exogenously induced change in prices, the consumer chooses a different
bundle of goods, so as to still maximize his utility. It is hardly an exaggeration to say that the
theory on how this behavioral adaptation takes place forms the very core of (neo-classical)
economics.
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This immediately answers the question on how an economist would typically view the issue
of risk compensation. He would agree neither with (a «weak» version' of) the risk homeosta-
sis hypothesis, according to which P, = P,, nor with the traditionalist engineering view, which

would imply P, = F;.

In the economist's world, the consumer always adapts to price changes, but rarely in such a
way as to keep expenditure on a given a commodity constant. This occurs only in the special
case where the price elasticity of demand is exactly —1. In our diagrammatic example, the road
user decides to «buy» more speed (i e, increase the speed from s, to s,), as this «commodity»
becomes «cheaper». However, he does not increase he consumption of speed so much as to
keep the consumption of the substitute — safety — exactly constant. He decides to «buy» a little
more of both”.

By analogy, a 100 per cent risk compensation would be a mere coincidence. It is the exception
rather than the rule. The same is true of zero risk compensation. The end result would typi-
cally be somewhere in-between, or perhaps — in rare cases — even outside the 0-100 per cent
interval’. From an economic viewpoint, the extent to which risk compensation occurs depends
on the indifference map of the road user. It is therefore, in essence, an empirical question.

In essay 3, we attempt to answer this question, in relation to a limited number of road accident
countermeasures or risk factors for which relevant data have been available.

There are two types of tests by which this issue will be elucidated.

The casualty subset test consists in comparing effects for disjoint subsets of accidents or vic-
tims. If an initial safety improvement benefiting, say, car drivers is compensated, one might
expect an adverse effect on other road user categories, to the extent that these are involved in
bipartite or multipartite accidents with automobiles. In essence, this was the rationale behind
Peltzman’s (1975) controversial assertions.

A second opportunity for testing for behavioral adaptation lies in the comparison of casualty
effects by degree of severity. While some safety (or risk) factors would tend to decrease (or
increase) the probability of an accident, others work by influencing the severity of the acci-
dent, given that it takes place. One might refer to these two types of factors as accident coun-
termeaures and severity reducing measures, respectively. Dual braking systems belong to the
former group, while seat belts are an example of the latter.

A formal analysis based on utility maximization (presented in essay 3) suggests that whenever
a severity reducing measure is subject to risk compensation, an increase in accident frequency

! In Wilde’s «strongy version of the risk homeostasis hypothesis, the risk is constant per unit of time rather than
per unit of distance traveled. We refer the reader to section 6.1.4 of essay 3 for a discussion including this case.

2 One may view the function P(s,x) as the traveler’s budget constraint. The shift in this curve may be interpreted
as a decrease in the «price of speed».

3 One carmot rule out the possibility that, in another indifference map, one would have 7, > F,oreven £, <7,.
In the former case, the «price elasticity of demand for speed» is less than —1. In the latter case, which implies
s, <s, as long as the curve P(s,x} x= x2) is fixed, speed is a Giffen good: less speed is «consumed» as the

price goes down.

14



Introductory overview

may be expected. And vice versa: whenever an accident countermeasure is compensated for,
an increase in severity should be observed.

Thus, whenever an independent variable has an opposite sign effect on the two dependent
variables (frequency and severity), there is reason to believe that we are faced with a risk or
safety factor whose effect is somehow subject to compensation.

Discrete choice modeling

At the outset, discrete choice modeling was generally confined to simple, binary logit or pro-
bit analysis without much behavioral or substantive theoretical foundation (Berkson 1944,
1953, 1955). However, the theoretical developments during the 1970s paved the way for in-
creasingly sophisticated discrete choice models with a sound and rather elegant economic
basis in the form of random utility theory. The multinomial logit model (Theil 1969, McFad-
den 1974, Domencich and McFadden 1975) allows the analyst to handle several, mutually
exclusive choice alternatives simultaneously. The nested logit model (Ben-Akiva 1973, Wil-
liams 1977) can be used to estimate choice probabilities within a hierarchy of sequential deci-
sions, by which one is able to relax the (in)famous «Independence of Irrelevant Alternatives»
(IIA) condition. The Box-Cox logit model relaxes the linearity assumption of the standard
(linear) logit model, and allows for simultaneous estimation of logit regression coefficients
and functional form (Gaudry and Wills 1978, Gaudry et al 1989).

A rather useful extension was developed by McFadden (1978), who showed that, if the num-
ber of available alternatives is intractably large, consistent estimates of the logit model pa-
rameters can be obtained on the basis of a randomly sampled subset of alternatives, in which
the chosen alternative is included with probability one. This technique is quite useful when
dealing with destination or residential choice, or — more generally — in situations where the
alternatives, although discrete, are virtually innumerable, or at least rather large.

In this dissertation, we exploit the method of alternative sampling to study the choice between
competing road investment projects within Norwegian counties (essay 1). For each four-year
road plan, the public roads authorities of each county compile a full priority ranking between
candidate road investment opportunities, along with cost-benefit analyses of all projects and
other supplementary information. By fitting a logit decision model to this data set, we attempt
to reveal the underlying preferences of the public road authorities.

A similar study, with the evocative title «The revealed preferences of a government bureauc-
racy», was performed by McFadden (1975, 1976) in California. Incidentally, this study also
examined road investment decisions (freeway route choice), however without resorting to the
alternative sampling technique or to rank-order preference data.

The demand for automobiles and road use

Transportation demand elasticities have been the subject of extensive research, at least for
passenger transport (see, € g, the excellent survey articles by Oum et al. (1992) and by Good-
win (1992), and references therein). But the elasticity estimates derived are quite disparate,
depending on data, functional specification, degree of aggregation, etc. Some researchers
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(Goodwin 1977, Blaise 1980, Dargay 1993) suggest that consumer response may not be
symmetric in regard to rising or falling prices («hysteresis»), demand being less elastic as the
price (of fuel) falls than when it rises.

Few — if any — studies allow for the possibility that (aggregate) demand elasticities may not be
constant over the observed range of price (or income) variation. We can, however, see no
theoretical reason why they should be. Even under the (unfounded) assumption that demand
elasticities with respect to the total cost of transport should be constant, there is every reason
to think of the elasticity with respect to the fuel price component as variable. A higher fuel
price is associated with a higher fuel cost share. If only for this reason, fuel price elasticities
should be increasing (in absolute value) with the initial fuel price level. This applies to com-
mercial freight as well as to private travel. Even in the latter case, fuel is but one of the (gen-
eralized) costs of travel incurred, other distance-dependent components being travel time, dis-
comfort, risk, insurance, vehicle maintenance, etc.

Oum et al. (1992:153) argue cogently that

«Different functional forms can result in widely different elasticity estimates, even with the
same set of data. ... The problem is long neglected by researchers and transport practitioners.
Typically, an ad hoc demand specification is used and little attention is directed towards testing
the specification against an alternative. With the advances in econometric theory and computing
technology, we think that specification testing should become an integral part of empirical
transport demand research in the future.»

Being in complete agreement with this argument, we have, in essay 3, specified estimably
non-linear demand relations, using the Box-Cox regression modeling technique. The Box-
Cox class of relations is such that hyperbolic, logarithmic, linear, quadratic, cubic and higher
power forms, or any power transformation in-between these, fall out as special (nested) cases
within the family of generalized linear models. We will therefore be able, not only to test
various specifications against each other, but also to determine the oprimal (best fit maximum
likelihood) form of the relation, as a function of the empirical evidence available.

Our suspicion is that such (Box-Cox) relations might be entirely sufficient to explain the ap-
parent asymmetry («hysteresis») of road user response. Large price reductions tend to shift the
market equilibrium into the inelastic range, while substantially increasing prices imply a
movement into the highly elastic range. The theoretical and empirical insight into (the possi-
ble curvature of) these relations may have important policy implications. Gaudry and Wills
(1978) have demonstrated how allowing for flexible functional forms in transportation de-
mand relations may significantly alter the subject-matter empirical conclusions to be drawn,
compared to fixed-form model specifications.

Another recommendation made by Oum et al. (1992) is this:

«It is well known that demand becomes more elastic in the long run because users are better
able to adjust to price changes. The distinction between long-run and short-run, however, is
quite arbitrary in most transport demand studies. More carefully structured long-run studies are
needed to integrate location choice and asset ownership decisions with transport demand.»

While localisation effects are well beyond the scope of our study, we have been able to ex-
plicitly model asset (i e, car) ownership, using a partial adjustment approach, so as to derive
short term as well as long (or at least medium) term demand effects.
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Most travel demand studies are based on the disaggregate discrete choice modeling paradigm.
Estimates are usually based on a cross-sectional sample of individual travelers or households.
Aggregate demand clasticities may be derived by means of the sample enumeration method, i
e by sirnulating response at the disaggregate level and summing through the sample (Ben-
Akiva and Lerman 1985). By constructing socalled prototypical samples, one might ensure
that the disaggregate behavioral responses are weighed together in such a way as to be repre-
sentative of a given population (Ramjerdi and Rand 1992).

QOur approach is different. We rely on aggregate, pooled cross-section/time-series data. This
approach may entail certain disadvantages in terms of aggregation and measurement errors.
But a distinct advantage is that certain variables, which do not vary over a cross-section of a
disaggregate units, may exhibit ample variation over time. Some of these variables, such as
interest and tax rates, turn out to be quite important determinants of car ownership and use
(essay 3).

Accident modeling

The Poisson probability model

There are compelling reasons to think of accidents as the outcome of a Poisson process (es-
says 2 and 3).

The first scientist to make a connection between empirical phenomena and the theoretical
probability distribution derived by Poisson (1837, 1841) was Ladislaus von Bortkiewicz, who
discovered that the Poisson distribution offered a perfect fit to the frequency of death by
horse-kick in the Prussian army (Bortkewitsch 1898).

Bortkiewicz' observation represented an extremely original and innovative idea for his time.
The relztionship between probability theory and statistics, which is now seen as so obvious
that teachers may have difficulty explaining the difference to their students, had not yet been
recognized as a general principle applying to all probability distributions. It was, however,
known that the normal distribution and the law of large numbers could be applied in this way.
The elegance and usefulness of these mathematical results, associated with some of the most
illustrious and prestigious mathematicians of all times (Gauss, Laplace, and others), had cre-
ated a research paradigm in which almost all attention was focused on large sample theory.
Against this background, the title of Bortkiewicz' book — «The law of small numbers» — was
an intriguing one.

It was, however, not very accurate. We now know that the Poisson probability model is
equally valid for large event counts, although the limiting distribution of the Poisson is the
normal, so that in this case the distinction between the two distributions becomes immaterial
(see Haight 1967, or Johnson and Kotz 1969).

Following the seminal works of Nelder and Wedderburn (1972), McCullagh and Nelder
(1983), Gourieroux et al (1984a, b) and Hausman et al (1984), (generalized) Poisson regres-
sion models have come into widespread use in recent years, as applied to data sets with non-
negative integer-valued dependent variables («count data»). Accident counts clearly fall into
this catezory.
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The most distinctive feature of the Poisson distribution is that its variance equals the mean.
This one parameter is sufficient to uniquely determine the distribution.

A generalization of the Poisson probability model is obtained when one assumes that the
Poisson parameter is itself random and drawn from a gamma distribution. The resulting com-
pound distribution is the negative binomial (Greenwood and Yule 1920, Eggenberger and
Pélya 1923).

In the negative binomial distribution, the variance generally exceeds the mean. In the limiting
(special) case when it does not, we are back to the Poisson. The discrepancy between negative
binomial and Poisson variance is commonly referred to as overdispersion.

Our essay 2 is an example of accident analysis based on generalized Poisson regression mod-
eling. Other applications can be found in Fridstrem and Ingebrigtsen (1991) and in Kulmala
(1995), among many others.

The case for aggregate econometric accident models

Although accidents are the result of human behavioral decisions, they are not chosen. Acci-
dents arc unwanted events (except in the criminal or suicidal case). They are random and un-
predictable at the micro level, in the striking sense that, had they been anticipated, they would
not have happened. Each single accident is, in a sense, unpredictable by definition.

At the micro level, accidents are thus not only epistemically (subjectively) but even ontologi-
cally (objectively) random in character. Our failure to predict the single accident is not a mat-
ter of incomplete knowledge. No matter how much we learn about accident generating
mechanisms or countermeasures, we would never be able to predict exactly where, when, and

by whom the single accident is going to occur.

We therefore believe that accidents are governed by what Salmon (1984) has referred to as an
«irreducibly statistical law», according to which single events may occur at random intervals,
however with an almost constant overall frequency in the long run. Such laws are common in
particle physics, but rare in the social sciences. Although the single event is all but impossible
to predict, the collection of such events may very well behave in a perfectly predictable way,
amenable to description by means of precise mathematical-statistical relationships. We be-
lieve that this principle applies to traffic accidents as it does to quantum physics and to the
(repeated) toss of a die.

Thus, the fact that accidents are random and unpredictable at the micro level does not mean
that their number is not subject to causal explanation or policy intervention. We can, through
the design of road systems and vehicles and through our choice of behavior as road users, in-
fluence the probability of an accident occurring, thereby altering the long-term accident fre-
quency (just as we can change the odds of the game by loading the die).

This long-term accident frequency — the expected number of accidents per unit of time - one
might choose to think of as the result of a causal process. This process accounts for the rather
striking stability observable in aggregate accident data, in which the random factors («noise»,
«disturbance») having a decisive effect at the micro level, are «evened out» by virtue of the
law of large numbers. The causal process determines the expected number of accidents, as a
function of all the factors making up the causal set (the causes).
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To be specific, let @, denote the expected number of accidents occurring during period ¢ at
location r. The expected number of accidents is, of course, not a constant — it varies with lo-
cation and time, i e with r and 7. One may refer to this variation, attributable to the various
causal factors, as systematic. Unlike the random or pure chance variation, the systematic
variation can — in principle — be influenced and controlled. Only the systematic variation is of
interest from a policy point of view.

Let x, = [x‘,, X, ]’ denote the vector of causal factors determining @,,, ie

Dy = E[ytrlxtr]= f(xtr)7
where y, denotes the observed (factual) number of accidents at time ¢ in location r, and
I (x,,) is some (regression) function of the causal factors. Then, trivially,

ytr = f(xtr)+ ulr »

where the u, are disturbance terms defined as the difference between observed and expected
accident counts. '

In most econometric applications, the disturbance term is primarily epistemic — it is a reflec-
tion of the analyst's incomplete knowledge. This is, e g, the main rationale behind the random
utility assumption underpinning the discrete choice theory referred to above (Ben-Akiva and
Lerman 1985). There is, in general, no way to know how large the disturbance term of a given
model should be expected to be, and no absolute and generally accepted yardstick against
which one may judge the explanatory power (fit) of a linear logit or regression model. The
goodness-of-fit measures usually computed in regression models are therefore, in our view, of
very limited interest as a guide to the analyst or user.

In a perfectly specified accident regression model, however, he disturbance term may be
viewed as ontic — a reflection of the unknowable rather than the unknown, or of the logical
impossibility of casualty prediction at the micro level. Accident counts are random in a much
more fundamental sense than almost any other object of study within economics or within the
social sciences in general.

Therefore, the econometrician working with accident models may find himself in a very fa-
vorable position. The fact that accident counts are unpredictable at the micro level and Pois-
son distributed at the macro level, provides the analyst with a piece of knowledge seldom
available to econometric practitioners. He knows that if he has explained all systematic varia-
tion, the remaining (random) disturbance should have variance — at each sample point — equal
to the expected value of the dependent variable. In other words, having estimated the system-
atic part of the relation, he knows what to expect even from the random one.

The recognition of these ideas has some important implications for econometric practice.

1. The econometrician working with accident counts will have excellent knowledge of this
disturbance distribution, and may apply specialized maximum likelihood estimation tech-
niques with considerable confidence. Alternatively, if resorting to generalized least
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squares or similar procedures, he will have first rate information on the heteroskedasticity
of the model and hence of how to define the optimal weights®.

2. For any accident regression model, it is possible to compute an optimal goodness-of-fit

(termed P? in essay 2), determined by the amount of residual variation that would be left
if the model had been correctly specified and all parameter estimates were equal to the
true parameter values. This measure is observable and quite robust — indeed, virtually in-
variant — under alternative model specifications. By comparing the actual coefficient of

determination (R?) to P2, the analyst is able to tell how far the model is from explaining
all systematic variation. If R* exceeds P, the model is overfitted.

3. Another way to assess the performance of the model is by means of the overdispersion
parameter, which is also calculable for any accident regression model. This parameter
tends to zero as the amount of explained systematic variation approaches 100 per cent.

4. For cases in which the «pure» Poisson model is unrealistic, either because the events ana-
lyzed are not probabilistically independent, or because not all the relevant explanatory
variables can be identified and measured, the generalized Poisson (negative binomial)
maximum likelihood method represents an excellent alternative. Using this technique the
analyst is able to zest, by means of the overdispersion parameter, whether or not the pure
Poisson assumption can be justified.

Thus, compared to the average econometric analyst, the accident modeler may draw upon an
unusually rich and well-founded body of statistical theory. Few subjects or applications lend
themselves to rigorous econometric analysis in quite the same way as road safety (essays 2

and 3).

A fifth advantage affecting the accident econometrician is the general abundance of accident
statistics and the opportunity to subdivide these data into meaningful severity classes or casu-
alty subsets, which may sometimes be used in a procedure to test for behavioral adaptation,
alleged causal links, or omitted variable bias (essay 3).

A brief history of accident models

An early attempt to apply least squares regression analysis to accident rates was made by
Recht (1965), who used a cross-sectional data set consisting of 45 US states as of 1960.
Among the more well-known studies — not so much for its methodology as for its controver-
sial, substantive conclusions — is Peltzman's (1975) attempt to estimate the effects of automo-
bile safety regulation by means of aggregate time series data. Other important contributions
were made by Robertson (1981), Joksch (1984), Graham and Garber (1984), Partyka (1984,
1991), Harvey and Durbin (1986), Oppe (1989, 1991a, 1991b) and Zlatoper (1984, 1987,
1989, 1991), to mention a few. Many of these studies are focused on general macroeconomic
variables and their relation to accident rates.

The partial relationship between traffic volumes and accident counts has been addressed by
several researchers, although rarely with sophisticated econometric techniques. An influential

4 An iterative or at least two-step procedure may be necessary to achieve this.
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set of studies were made by Smeed (1949, 1955, 1974), who generally claimed the fatality
count tc be proportional to the cubic root of the motor vehicle stock multiplied by the squared
population. Subsequent studies have provided less clear-cut results’.

A most important step forward was made with the DRAG® model for Quebec (Gaudry 1984),
whose novelty consisted, infer alia, in (i) a substantially extended set of explanatory factors,
(ii) a multi equation modeling approach, in which not only the accident frequency, but also
their severity and the underlying amount of exposure were treated as endogenous variables to
be explained, and (iii) an estimation technique allowing for estimably flexible (non-linear)
functional forms for several dependent and independent variables.

Later modeling efforts within the DRAG tradition include a German model (Gaudry and
Blum 1993), a French model (Jaeger and Lassarre 1997), a local Swedish model (Tegnér and
Loncar-Lucassi 1996), an updated model for Quebec (Gaudry et al 1995), a model for Cali-
fornia (McCarthy 1999), and the Norwegian model (TRULS) to be presented in this disserta-
tion (essay 3). An account of all of these models is forthcoming in Gaudry and Lassarre
(1999).

$ An excellent review of early works can be found in Satterthwaite (1981).

* DRAG i3 an acronym for «Demande Routiére, Accidents et leur Gravité», or «Demand for Road use, Acci-
dents, and their Gravity» in its English version.

TTRULS is an acronym for «TRafikk, ULykker og Skadegrad», meaning «Traffic, Accidents, and Severity».
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Essay 1: The barely revealed preference
behind road investment priorities

Background and objective

The decision process governing the allocation of resources between competing road invest-
ment projects has been the subject of several recent studies in Scandinavia (Elvik 1993, Odeck
1991 and 1996, Jansson and Nilsson 1989, Nilsson 1991, Nyborg and Spangen 1996). In gen-
eral, these studies have shown very weak — if any — association between the priority ranking
assigned to a given road investment project and the project's calculated economic cost, bene-
fit, or benefit/cost ratio. This may seem surprising in view of the fact that, if a maximum eco-
nomic benefit is to be obtained within the constraint of a given investment budget, an optimal
decision rule would be to rank the projectsaccording to a decreasing benefit/cost ratio, and
then carry out the projects in that order, until the budget is depleted.

In essay 1, we set out to reexamine this issue by means of potentially more powerful statistical
methods than have previously been adopted. When previous studies have been unable to de-
tect any clear association between benefit/cost ratio and priority ranking, could the reason be
that these studies fail to take into account («control for») certain fairly important constraints to
which decision makers are subject? Would a different picture emerge through an appropriate,
multivariate method of analysis, in which one estimates the partial effect of economic cost
and benefit conditional on the relevant constraints? Would it be possible to separate out the
effects of different benefit components, estimating, e g, the weight put on safety improve-
ments as compared to time savings? Are there a lot qualitative factors at play, beyond those
taken account of in the benefit/cost calculations, which influence decision-making? If so,
would it be possible to identify these factors?

Data and method

For the National Road Plan 1990-93 (as for any four-year road plan), each regional office of
the Norwegian Public Roads Administration was required to conduct cost-benefit analyses of
all candidate investment projects and to make a formal (rank order) list of priorities among
these projects. From this, the central agency of the Public Roads Administration assembled an
investment project data base containing all projects ranked by the regional road agencies
(some 700 projects). A fairly large number of variables characterizing each project were re-
corded in the data base, including cost, benefit (four components), type of road, type of area,
legal planning requirements, etc. By courtesy of the Public Roads Administration, we were

granted access to this data base.

Given that all n,(say) projects within a given county r have been ranked with respect to each
other, a full information method of discrete choice analysis is to consider every project except
the last one as «preferred» to all lower ranked alternatives. This method is known as «ex-

ploded logit» analysis: one «explodes» a ranking of n, alternatives inton, —1 implicit choices,
each alternative being considered «chosen» from the set including itself and all lower ranked

options.
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In our case, a full-fledged, exploded logit modeling procedure would require the estimation of
discrete choice models with up to 99 alternatives (since, in one county, there are no less than
99 projects ranked). Given the constraints of the computer software available, such a large
number of alternatives would force us to severely limit the number of independent variables
used. We therefore decided to combine the exploded logit approach with another specialized
discrete choice modeling technique — that of alternative sampling.

For each alternative, we drew a random sample of size 10 from the set of lower ranked op-
tions, thus forming — together with the «chosen» (highest ranking) project — an 11-alternative
choice set. Obviously, when there were less than 10 projects left on the list, the choice set
became smaller, consisting of only two alternatives for the second last option ranked (project

n,—1).
A logit model with exclusively generic coefficients was then estimated on the basis of a

pooled data set for all counties, each county being represented by n, —1 choice observations
from a set of (up to) 11 alternatives.

Based on this model, we are — in line with common practice within, e g, value-of-time studies '
— able to derive implicit, marginal rates of substitution between the various pecuniary or non-
pecuniary independent variables, as revealed by the choices made by the public decision
maker.

Main results

Relying on our relatively information efficient method of analysis, we do find — unlike previ-
ous studies — statistically significant effects of cost and benefit on priority ranking. Both ef-

fects have the expected sign.

The effects are, however, not very large. Compared to certain other independent variables
entering the model, the impacts of cost or benefit appear to be rather marginal.

Cost savings appear to be valued at about twice the rate of benefits. Even large increases in
benefit appear to have an only minor effect on the probability of being ranked above a com-
peting project. Apparently, decision makers are more concerned with geographic distribution
(equity) than with allocative efficiency.

When benefit is decomposed into its various parts, road user benefits (primarily time savings)
are seen to be by far the most important component, in terms of its size (compared to the other
components) as well as by with its marginal impact on priority ranking. Safety benefits have a
statistically insignificant effect, along with noise abatement benefits. Benefits accruing to the
road owner (i e, the Government, as represented by the Public Roads Administration itself)
come out with a counterintuitive, barely significant, negative effect on ranking. These benefits
may take the form, e g, of reduced maintenance expenditure.

In total, the model explains no more than a small share of the variation present in the data set.
The explanatory power of cost and benefit appears particularly modest. We are, in other
words, «barely» able to reveal the preferences of the decision makers.
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Essay 2: Measuring the contribution of
randomness, exposure, weather, and day-
light to the variation in road accident
counts

Background and objective

Road accident statistics are, understandably, the subject of considerable interest on the part
of media, policy-makers, organizations, and the general public. Instances in which accident
counts are, for some reason, unusually high, receive particular attention. Such cases are
almost invariably interpreted as a change in the underlying accident risk, and tend to gener-
ate some form of public action or outcry.

But accidents counts are, as already noted, influenced by numerous factors other than the
risk level. The aim of this research, which was commissioned by the Nordic Council of
Ministers as an inter-Nordic endeavor, was to assess how much variation in the accident
counts is typically attributable to randomness, to exposure, to weather and daylight, and to
(changes in the) accident reporting routines. Only when all of these factors have been con-
trolled for can we interpret changes in accident counts as attributable to changes in risk, i e
in the expected (long-term) number of accidents or victims per unit of exposure.

Method

To analyze these issues, combined cross-section/time-series data bases were established for
each of the four greater Nordic countries. Monthly accident counts were recorded for each
county (province), of which there are 14 in Denmark, 11 in Finland, 19 in Norway, and 24 in
Sweden. The time period of observation used for this study covered between 132 (Denmark)
and 168 (Norway) months, yielding at least 1 700 units of observation for each of the four

countries.

Apart from accident statistics, the data bases include, inter alia, data on fuel sales (a proxy
for exposure or traffic volume), weather conditions, the duration of daylight, changes in
legislation and reporting routines (dummies), a trend variable, and dummy variables for the
different counties and months.

Due to dissimilarities with respect to the availability and quality of statistical sources in the
four countries, it has not been possible to adopt exactly the same variable definitions and
classifications in all countries, nor has it been possible to lump all data into one, four-
country data base. Thus, we have not able to analyze the variation between countries; only
the temporal and spatial variation within each country has been subject to study.

Generalized Poisson (i e, negative binomial) regression models for each country were esti-
mated with three types of dependent variables: the number of injury accidents, the number
of fatal accidents, and the number of fatalities (road users killed). The first category in-
cludes even the fatal accidents.
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Exploiting the Poisson assumption (i e, the equality between mean and variance), we show
how it is possible to define goodness-of-fit measures that take account of the objective ran-
domness inherent in accident counts. These measures may be said to compare empirical
accident models, not with a bound implying that all variation is explainable, but with a
yardstick implying that all epistemic (subjective) errors have been removed, while the ontic
(objective) randomness remains, as an unavoidable feature of accident counts.

Five different goodness-of-fit measures of this kind were defined and calculated. One is
based on the familiar coefficient of variation (R2), a second (RﬁW) on its weighted ana-

logue, a third (R2.) on the so-called Freeman-Tukey deviates (Freeman and Tukey 1950),

a fourth (R2, , the «Elvik index») on the overdispersion parameter, and a fifth (R;,) on the
log-likelihood ratio. By relying on more than one measure we attempt to minimize the risk
of drawing conclusions on account of methodological choices rather than subject matter
relationships.

Main results

The five different ways of measuring explanatory power were seen to yield reassuringly

similar results, with one possible exception. The measure R2, , which is based on weighted

(variance stabilizing) residuals and correspond to the Pearson chi-square statistic, is not
invariant under alternative assumptions regarding the «true» («benchmark») probability
model, and sensitive to estimation errors affecting the smallest accident counts. Its use is

therefore discouraged.

The comparison between injury accident and fatal accident models reveals that the scope for
normal random variation is strongly dependent on the size of the unit of observation, as
measured by the expected number of events. For data sets in which the expected number of
events is small - say, always less than 10 - a major part of the variation will typically be
due to sheer chance. It is useful for the analyst to be aware of the fact that, in such cases,
no model should attempt or be able to explain more than a smaller part of the observed
variation. When the effects of policy interventions are to be evaluated, it is essential to be
able to control for the sometimes very important random component in casualty counts.

Thus, in the models for fatal accidents per county and month, randomness accounts for
between 50 per cent (Denmark) and 80 per cent (Norway) of the total variance. The differ-
ence between Denmark and Norway is simply due to the fact that the Danish counties are
generally larger (in terms of population, exposure, or accidents).

For injury accidents, which are a lot more frequent, randomness accounts for less than 10
pent of the variance.

When the purely (ontologically) random variation has been subtracted, exposure (literally,
gasoline sales) accounts for more than 70 per cent of the remaining (systematic) variation in
injury accident counts, and more than 50 per cent of the variation in fatal accident counts.
Changes in reporting routines explain up to 7 per cent, while weather and daylight may
account for another 6 per cent. Taken together, our four general factors (randomness, expo-
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sure, reporting, and weather/daylight) typically explain around 90 per cent of the total (ran-
dom and systematic) variation across counties and months in a Nordic country.

For casualty counts that are not probabilistically independent, such as fatalities or victims,
of which there may be several in one accident, our specialized goodness-of-fit measures are
somewhat harder to interpret, and generally lower. This is so because when there is (prob-
abilistic) dependence between disaggregate events, overdispersion must always be ex-
pected®.

8 When the correlation between the events is negative, underdispersion —1i e a variance lower than the Poisson
mean — may occur. Parity, i e the number of children born to each woman, is an empirical example of this. The
more children have already been born, the smaller is the probability of another birth {Winkelmann and Zim-

mermann 1992).
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Essay 3: An econometric model of car
ownership, road use, accidents, and their

severity
Overview of the model TRULS

Essay 3 is by far the largest and most important of the three essays. Here, we report — in con-
siderable detail — on our endeavor to develop a large econometric model for car ownership,
road use, accidents, and their severity. The model has received the acronym TRULS’.

The TRULS model is a member of a larger family of models, all inspired by the DRAG model
for Quebec. The common features of all members of the DRAG family is an at least three-
layer recursive structure of explanation, involving road use, accident frequency, and severity,
and an econometric technique — called BC-GAUHESEQ (Box-Cox Generalized AUtoregres-
sive HEeteroskesdastic Single EQuation) — allowing for estimably non-linear relationships
(Gaudry et al 1993, Liem et al 1993).

Road use (traffic volume) is not considered an exogeneous factors, but explained by a number
of socio-economic, physical and political variables. Accident frequency is modeled depending
on road use, the presumably single most important causal factor. Accident severity is modeled
as the number of severe injuries or fatalities per accident, i e as the conditional probability of
sustaining severe injury given that an accident takes place.

Thus, the total number of fatalities (e g) is decomposable into two parts: the number of acci-

dents x the number of fatalities per accident. This multiplicative decomposition allows for
added insights and interesting substantive interpretations, as we shall see later on.

Some DRAG-type models include additional layers of explanation or prediction. The TRULS
model, e g, includes (i) car ownership, (ii) seat belt use, and (iii) a decomposition between
light and heavy vehicle road use, adding to the set of econometric equations.

Also, while most DRAG-type models use the fuel sales as a (rather imperfect) measure of the
traffic volume, in TRULS we have constructed (iv) a submodel designed to «purge» the fuel
sales figures of most nuisance factors affecting the number of vehicle kilometers driven per
unit of fuel sold. These nuisance factors include vehicle fuel economy, aggregate area-wide
vehicle mix, weather conditions, and fuel hoarding due to certain calendar events or price
fluctuations.

A further point at which the TRULS model differs from other members of the DRAG family,
is by the estimation of (v) separate equations for various subsets of casualties (car occupants,
seat belt non-users, pedestrians, heavy vehicle crashes, etc). These equations are meant to
shed further light on the causal mechanisms governing accidents and severity. In order to
avoid, to the largest possible degree, spurious correlation and omitted variable biases, we de-
velop certain specificity tests not previously used within the DRAG modeling framework. We
refer to these tests as casualty subset tests.

Unlike other DRAG family models, the TRULS model starts from an assumption that casu-
alty counts in general follow a (generalized) Poisson distribution (see Fridstrom et al 1993,
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1995). To enhance efficiency, in the accident equations we therefore rely (vi) on a disturbance
variance specification approximately consistent with the Poisson law. To this end, we develop
a special statistical procedure, termed Iterative Reweighted PQisson-SKedastic Maximum
Likelihood (IRPOSKML), for use within the general BC-GAUHESEQ statistical framework.

Car ownership

Y

Seat belt use Road use
- urban areas - light vehicles
- rural areas - heavy vehicles

A A 4
Victims | Accidents
- fatalities - injury accidents
- dangerously injured - - fatal accidents
- severely injured
- slightly injured

- car occupants
- pedestrians

- bicyclists

- motorcyclists

Severity

- killed per injury accident

- severely injured per accident
etc

Figure 2: Dependent variables in the model TRULS

Finally, the TRULS model is the only DRAG-type model so far being based (vii) on pooled
cross-section/time-series data. Other DRAG family models rely exclusively on time-series.
Our data, however, are monthly observations pertaining to all counties (provinces) of Norway.
The period of observation extends from January 1973 until December 1994, thus covering 264
months. Since there are 19 counties in the country, the data set contains a total number of
5 016 units of observation.
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The structure and interdependencies between endogenous (dependent) variables in the TRULS
model are shown in figure 2. In table 1 we provide an overview of (broad categories of) inde-
pendent variables entering the model.

Note that only direct effects are ticked off in this table. In general, the total effect of an inde-
pendent variable on — say — accident frequency, will be a sum of direct and indirect effects, as
channeled though the recursive system pictured in figure 2. For instance, the interest level has
a direct effect on car ownership only. However, since car ownership affects road use, which in
turn affects accidents, interest rates may turn out as an important indirect determinant of road
casualties. The tracing of such effects is the very purpose of our multi-layer modeling ap-
proach.

Table 1: Independent variables in the model TRULS

Direct effect upon (dependent variable)

Independent variable Car Ve- Seat Acci-  Vic- Seve-
owner- hicle  belt dents tims  rity
ship kms use

Exposure N N N
Infrastructure v + N N N
Road maintenance N N N
Public transportation v v N N N
Population v v N N N
Income y v

Prices ~ N

Interest rates ~

Taxes v N

Vehicle characteristics N v N N N
Daylight v N N N
Weather conditions v N N N
Calendar effects v N N} N
Geographic characteristics y 4 N N N
Legislation N N N J
Fines and penalties 4

Access to alcohol N N N}
Information 4 y

Reporting routines v < N}
Randomness and measure- V N N, N N
ment errors
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An econometric method to estimate vehicle kilometers from traffic counts

The number of motor vehicle kilometers driven per county and month is probably the most
important systematic factor behind the accident counts (cf essay 2). To arrive at a maximally
accurate and reliable measure of this crucial factor, an econometric submodel was developed

(chapter 3 of essay 3).

A variety of statistical indicators exist on road use, none of which, however, provide complete
and accurate information. Traffic counts may be taken regularly at given cross-section points
of the road network, but their representativity as applied to a given geographic area (say, a
province or country) is, at best, hard to establish. Fuel sales statistics are influenced by
weather variations, speed or congestion levels, hoarding, and interprovincial travel, as well as
by changes in vehicle fuel efficiency.

However, by integrating many of these data sources within a consistent and fairly general
econometric framework, we derive apparently reliable estimates on the number of overall and
heavy vehicle kilometers driven by county and month in Norway during 1988-94. Values are
then extrapolated back to 1973, exhibiting a quite acceptable degree of precision as evaluated
against nation-wide annual statistics. Fuel consumption per vehicle kilometer is shown to be
strongly dependent on the air temperature, rising more and more sharply as the temperature
falls.

A model of aggregate car ownership and road use

Chapter 4 of essay 3 deals with aggregate car ownership and road use demand equations.
These two — car ownership and use — are closely connected variables, in the trivial sense that
one cannot (usually) use a private car unless the household owns one. At the same time, very
few households would acquire a(n extra) car unless they intend to use it.

From a more formal, microeconomic perspective, it may be argued that car ownership is con-
nected with certain fixed costs. These fixed cost of car ownership will be worthwhile to the
individual or household only if the utility derived from the (sub)optimal’ number of kilome-
ters driven exceeds the variable cost. Thus, the variable cost of car use affects car ownership.
And — vice versa — the fixed cost of car ownership affects the demand for car use. Elegant,
discrete-continuous microeconometric models of these joint decisions have been developed by
Train (1986), de Jong (1990) and Ramjerdi and Rand (1992).

Unfortunately, the mathematical structure of these microeconomic models is such as to break
down should the income elasticity of demand for cars approach unity or — indeed — be even
larger. Also, it might be argued against these models that the close connection between car
ownership and use follows with necessity from the mathematical model structure, rather than
being testable by means of empirical data.

Our approach, which is based on aggregate cross-section/time-series data, does not have these
shortcomings. Also, the time-series dimension of our data set allows us to estimate the effects
of certain variables that usually do not vary across a cross-section of household, which is the

? That is, optimal given the car ownership decision.
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usual source of data for microeconometric modeling. Such variables include interest and tax
rates.

A vehicie pool is an inert matter, comparable to a human population, although with generally
higher rates of turnover and shorter life expectancy. The stock of cars registered within a
given geographic unit changes from one year to the next, in response to the flows of (i) new
car acquisition («births»), (ii) used car sales («migration»), and (iii) scrapping («deaths»).
Given the very high level of purchase tax imposed on automobiles in Norway, used cars can
be sold abroad only at very substantial losses. Thus, the only important downward adjustment
mechanism operating at the macro level is scrapping, something which also involves heavy
losses unless the car is old enough to have lost most of its market value. Hence, in the aggre-
gate, car owners can be expected to adjust only slowly to changes in economic variables.

We therefore model car ownership as a partial adjustment process, implying that the aggregate
car stock, when subject to exogenous shocks, adjusts only slowly towards its new long-term
equilibrium.

Next, the aggregate demand for road use is estimated using the size of the private car pool as
one important explanatory variable. The elasticity (of vehicle kilometers with respect to ag-
gregate car ownership) turns out to be close to one.

Based on these estimates, short and long term road use demand and Engel curves are derived,
the long term effects incorporating — by definition — changes affecting car ownership equilib-
rium. In the long term, price and income effects are apparently much stronger than in the short
term. Also, demand relations are revealed — thanks to the Box-Cox modeling approach — to be
strongly non-linear, yielding, e g, much more elastic demand in the higher fuel price ranges
than in the lower. Explanatory variables used include road infrastructure, public transportation
supply, population, income, fuel prices, vehicle prices, interest level, weather and climate,
calendar effects, and geographic characteristics. :

The long term income elasticity of demand for road use appears to be somewhat larger than
unity, and apparently increasing with the income level. This finding may seem to have im-
portant and rather discouraging implications with respect to the goal of sustainable mobility.
There is no sign that the growth in aggregate road use demand will be tapering off as the
economy continues to grow — rather the contrary.

An auxiliary model of seat belt use

Seat belts are perhaps the single most important road safety measure introduced in industrial-
ized societies in the postwar period. Studies suggest that seat belts may cut the injury or death
risk by some 50 per cent, perhaps even more (Elvik et al 1989, 1997).

Seat belt wearing is to a large extent conditioned by exogenous, politically determined laws
and regulations. Largely on account of these measures, seat belt use in Norway has risen from
around 20-30 per cent in the early 1970s to about 80 per cent in the 1990s, according to road-
side surveys. This large increase may be thought to have had a considerable effect on the road
casualty toll, explaining, perhaps, in large part the downward casualty trend observed in the
1970s and -80s.
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Seat belt use is not generally an observed variable (at the level of county and month during
1973-1994), although a fairly large number of roadside sample surveys exist, splitting the car
drivers passing a given point on a certain day between seat belt users and non-users. However,
these estimates are subject to random sampling error and also, as applied to our countywide,
monthly units of observations, to an incalculable systematic error originating from the non-
random sampling of roadside survey points. Fortunately, these survey points remain fixed
from one survey to the other, so that the temporal variation in estimated seat belt use fre-
quency is not, in the same way as its Jevel, affected by the process of survey point determina-

tion.

By fitting a model to this incomplete set of observations and then imputing values for al/ units
of observations in our cross-section/time-series data set, we obtain a fairly well-founded set of
measures on seat belt use by county and month, in which sampling errors have been
«smoothed outy and the structural information on exogenous laws and regulations has been
exploited and incorporated. This submodel is presented in chapter 5 of essay 3.

A formal microeconomic analysis of risk compensation

In chapter 6 of essay 3, we develop the risk compensation argument sketched above into a
more comprehensive, mathematical theory of road user behavioral adaptation. Our derivation
builds on the formulation put forward by Blomquist (1986), but attempts to carry this analysis
several steps further

)] by formalizing and examining certain hypotheses put forward by Bjernskau (1994),
according to which behavioral adaptation depends on the initial risk level and expected
loss, so that, e g, severity reducing measures will be compensated only if the condi-
tionally expected loss in the event of an accident is small,

(i) by deriving certain empirically testable implications, such as the hypothesis that if risk
compensation occurs, one might expect opposite sign effects on accident frequency
and severity, respectively, and

(i) by examining not only the risk neutrality case, but also — to some extent — the risk
aversion case, as defined in terms of a two-moment utility function.

Unfortunately, our data set is not sufficiently complete for full-fledged empirical tests of the
many hypotheses emanating from the formal mathematical analysis. Most importantly, data
are lacking on material damage accidents and on key behavioral instruments, such as speed. A
number of interesting opportunities for future research are, however, indicated.

An empirical analysis of casualty counts

The core of essay 3 is a comprehensive econometric analysis of casualty counts in all Norwe-
gian counties. Separate equations are estimated for

¢ injury accidents,
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e car occupants injured,

¢ motorcycle occupants injured,

¢ bicyclists injured,

e pedestrians injured,

e severity of degree two'® (severely injured per injury accident),

e scverity of degree three (dangerously injured per injury accident), and

o monality («severity of degree four», i e death victims per injury accident).

By definition, the number of fatalities is calculable as the number of injury accidents times the
mortality measure. Similar multiplicative decompositions apply to the number of severely or
dangerously injured, respectively. By specifying a model based on such decompositions, cer-
tain important insights may be gained, especially as regards the question of behavioral adap-
tation.

Independent variables in the casualty count equations include exposure (overall and heavy
vehicle traffic volume, motorcycle use, public transportation supply), road infrastructure
(Iength of network, capital invested, and maintenance), population characteristics, vehicle
pool characteristics, weather and daylight, calendar effects, legislative measures, seat belt use,
access to alcohol, and reporting routines. Approximately 50 independent variables are used in
each equation.

Accident numbers appear to be roughly proportional to the number of vehicle kilometers, un-
der the assumption that the road network is extended at a rate corresponding to the traffic
growth. When, more realistically, the road network remains basically unchanged, casualties
appear to grow at a lesser rate than the traffic volume, implying decreasing risk per vehicle
kilometer, presumably because increased congestion forces speed levels down.

The analysis illustrates that it may be fruitful to see exposure as a multidimensional variable,
decomposing road use by type of vehicle, and acknowledging the importance of pedestrian
and bicyclist exposure, and of the public transportation system generating such exposure as a
result of access and egress trips. All of these exposure components have an effect on the in-
jury accident frequency.

Deriving compound elasticities within the recursive TRULS structure

In the last chapter of essay 3, we exploit the recursive structure of the TRULS equations to
derive a complete set of compound elasticities, showing how the various casualty counts de-
pend on any one of the exogenous variables entering the car ownership, road use, seat belt
use, accident frequency, or severity equations. Direct and indirect effects are accumulated and

1% Severity of «degree one, the number of injuries per (injury) accident, exhibits very little variation, as the
number of injuries is strongly correlated with the number of injury accidents. Due to the lack of information on
material damage accidents, we cannot, therefore, perform meaningful analysis of this severity level.
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expressed in terms of elasticities as evaluated at the subsample means over the last year of
observation (1994). A formal mathematical framework for the calculation of compound elas-

ticities is presented.

As a result of this, we are able to assess the ultimate road casualty effect, not only of variables
entering the casualty equations directly, but also of those variables exerting influence indi-
rectly, through their impact on car ownership, road use, or seat belt use. Important examples
of such variables are fuel and vehicle prices, interest rates, and tax rates.
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Abstract. An attempt is made to reveal the preference of decision makers within the regional
Norwegian public roads administration. The order of priority assigned to the respective, com-
peting public road investment opportunities within the various counties (provinces) is studied
by means of a rank order multinomial logit model. Explanatory variables used include cost,
benefit, and a variety of attributes characterizing the individual investment projects. Although
statistically significant, cost and benefit appear to be of only marginal importance for the
priorities set. More weight is attached to cost than to benefit. Smaller projects are preferred to
larger, given the benefit-cost ratio. In general, the models estimated arc able to explain only a
relatively small share of the priority sctting made.

Key words: public roads, investment, revealed preference, cost-benefit, logit model

1. Introduction

The decision process governing the allocation of resources between compet-
ing road investment projects has been the subject of several recent studies in
Scandinavia (Elvik, 1993; Odeck, 1991 and 1996; Jansson and Nilsson, 1989;
Nilsson, 1991; Nyborg and Spangen, 1996). In general, these studies have
shown very weak — if any — association between the priority ranking assigned
to a given road investment project and the project’s calculated economic cost,
benefit, or benefit/cost ratio. This may seem surprising in view of the fact
that, if a maximum economic benefit is to be obtained within the constraint
of a given investment budget, an optimal decision rule would be to rank the
project according to a decreasing benefit/cost ratio, and then carry out the
projects in that order, until the budget is depleted.

In this paper, we set out to reexamine this issue by means of potentially
more powerful statistical methods than previously adopted. When previous
studies have been able to detect virtually no association between benefit/cost

* Thanks are due to James Odeck and Toril Presttun for their advice and help in making
the data set available, to Jan Erik Lindjord and Lasse Torgersen for their file management
assistance, to Erik Bigrn and Inger Spangen for their valuable comments, and to the PROSAF
program of the Royal Norwegian Council for Scientific and Industrial Research for supporting
the analysis financially.
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ratio and priority ranking, could the reason be that these studies fail to take into
account (“control for”) certain fairly important constraints to which decision
makers are subject? Will a different picture emerge through an appropriate,
multivariate method of analysis, in which one estimates the partial effect
of economic cost and benefit conditional on the relevant constraints? Are
there a lot of qualitative factors at play, beyond those taken account of in the
benefit/cost calculations, that influence decision making? If so, is it possible
to identify these factors?

In short, we would like to be able to reveal the public decision makers’
preference, in much the same way as in the pioneering papers by McFadden
(1975, 1976). To this purpose, we have analyzed the data included in the
Norwegian National Road Plan (NRP) for the period 1990-93, using, first, a
rank order logit model for the detailed ranking within the respective counties,
and, second, a traditional four-alternative logit model explaining crude prior-
ity assignments for all the projects considered. By contrasting these two lines
of analysis we attempt to shed light on the possibility of a certain strategic
(budget maximizing) behavior on the part of the regional road agencies.

2. Road investment planning in Norway

Public roads in Norway are divided into three administrative classes: national
roads, county roads, and municipal roads. National roads are owned by the
state. Investment planning for national roads is conducted by the Public Roads
Administration, which consists of a central agency located in the capital and
19 regional offices, one in each county (province). The planning is done in
the form of four-year investment plans — the NRPs.

The planning process starts two to three years before the final plan is to be
presented. Thus, the National Road Plan for 1990-93 was drawn up during the
years 1987-89. The central agency of the Public Roads Administration sets
a timetable for planning and issues guidelines and instructions to its regional
offices. Each regional office of the Public Roads Administration is required
to conduct cost-benefit analyses of investment projects and to make a formal
list of priorities among these projects. Plans are made by each of these offices
and are henceforth sent to the central agency for review. They are then put
together to form the National Road Plan (NRP), which is, in turn, submitted
to the Parliament for approval.

3. A data set taken from the National Road Plan 1990-93

For the 1990-93 planning term, the central agency of the Public Roads Admin-
istration created an investment project data base containing all projects ranked
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and listed formally by the regional road agencies. More than 700 projects were
included in this data base. Projects located in the county of Oslo (the capital)
were, however, not included. In addition, the county of Aust-Agder had to be
omitted for the purpose of our analyses, since the benefit-cost ratio had been
defined in a way differing from that of other counties.

In addition to investment projects, the list of priorities made for each
county contained a few *“projects” that were not really investments, such as
planning and transfer payments to municipalities. Projects of this kind were
also omitted for the purpose of our analyses. We were thus left with a data base
consisting of 686 investment opportunities located in 17 different counties.

An overview of the variables used in our study is given in Table 1. Most
variables have been taken directly from the NRP data base, while a few
have been constructed or recoded on the basis of combined information
from the NRP and elsewhere. The MUNREP variable, for instance, has been
constructed through manual inspection of the respective county ranking lists,
along with maps facilitating the exact location of proposed road works.

It should be noted that we do not study the relative priorities between
projects in different counties — only the internal ranking within each county
is subject to analysis. The number of projects evaluated in the respective
counties varies from 8 to 99.

4. A model for road investment choice behavior

Our objective is to understand and explain the assignment of priorities to the
various road investment opportunities competing for funds within a given
county of Norway. We shall do so by assuming that the regional decision-
making unit can be pictured as behaving according to the logit model of
discrete choice. A brief description of this modeling framework is therefore
in order.

4.1. The logit model of choice
According to the standard, multinomial logit choice model, the probability

that a decision maker n will choose alternative 1 from a choice set C,, can be
written as follows:

Poli) = =5, ®

€y

where
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Table 1. Independent variables

COST
BENEFIT

. BCRATIO
BCRATIOZERO
USRBEN

USBENZERO
OWNBEN

OWNBENZERO
ACCBEN
ACCBENZERO
NOISBEN
ACCIDENTS
NOISEHOUSES
TIMEGAIN
BLACKSPOTS
AXLOADKMS

AADT
MOTORWAY
SCNDRYRD
MAINROAD
CITY
NEWROAD
BIKEWALK
SAFETY
PUBLIC
PLANREQ

NOPLANREQ
KMSFASTER

EARLY
STARTED

DECIDED
MUNREPZERO

MUNREP

DPLAN
LOCPLAN
MASTERPLAN
NOPLAN

Present value of investment costs (107 kr)

Present value of benefits (10° kr)

Benefit/cost ratio (102 - zero if missing)

| if BCRATIO = 0, otherwise 0

Present value of user benefits (10° kr), consisting of (i) reduced vehicle
operating costs, (i) travel time savings, and (iti) benefit due to improved
axle load tolerance

1 if USRBEN = 0, otherwise 0

Present value of road owner benefits (10 kr), consisting of (i) reduced road
maintenance costs and (ii) reduced ferry costs

1 of OWNBEN =0, otherwise 0

Present value of safety benefits (10% k), i.c. reduced accident costs
1 if ACCBEN = 0, otherwise 0

Present value of noise abatement benefits

Expected change in the number of accidents (10~ h

Number of dwellings affected by reduced noise

Travel time gain per road user (minutes)

Accident blackspots treated, as referred to the 1983-86 record
Number of road kilometers on which axle load tolerance is increased to 10
tons

Predicted annual average daily traffic as of the year 2000

1 if motorway, 0 otherwise

1 if secondary road, 0 otherwise (i.e., if principal road)

1 if main long distance itinerary road, 0 otherwise

1 if in major city area, 0 otherwise

1 if new road, O otherwise

1 if walk or bicycle path, 0 otherwise

1 if special safety measure, 0 otherwise

1 if measure to improve public transit, 0 otherwise

1 ifalocal development plan is legally required, however not yet in existence,
0 otherwise

1 if no development plan required, O otherwise

Number of road kilometers on which the speed can be increased from less
than 80 kms/h to at least 80 kms/h

1 if construction work is planned to start in 1989 or earlier, 0 otherwise

1 if construction has already started and must be continued in order for
previous investments to pay off, O otherwise )

1if project has been approved by Parliament, but not yet started, 0 otherwise

| if the host municipality in question is not already represented through a
higher ranked project, O otherwise

Number of times the host municipality in question is already represented
through higher ranked projects + MUNREPZEROQO

1 if a detailed area plan has been approved, C otherwise

1 if a local development plan has been approved, 0 otherwise
1 if a road master plan has been approved, O otherwise

I if no development plan has been approved, 0 otherwise
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Uin = Vijn + Wip (2)
and
K
Vin =Y mxXia(j). (3)
k=1

Here, Uj, is the “indirect utility” of alternative j, consisting of a system-
atic part Vj; and a random part wj,. The systematic part depends on a
parameter vector 5 = (ny,...,mk)’ and a vector of independent variables
x0(j) = (X1(j), ---» Xk (j))’. It can be shown (see, e.g., Ben-Akiva and Ler-
man, 1985) that if the random terms wj, are mutually independent and follow
the Gumbel (double exponential) distribution, then a decision maker maxi-
mizing expected utility will choose alternative i with a probability given by
equation (1).

The variables entering the logit indirect utility function may be of almost
any kind, as long as the utility function is linear in the parameters ny,...,
nk and there is sufficient variability in the data set to make all parameters
identifiable.!

4.2. The rank order logit model

In the Norwegian National Road Plan, for each county a unique order of
priority is defined between the various projects, ranging from 1 to r(f) — the
number of projects evaluated in county f.

To exploit the information contained in this ranking, we may infer - for each
county f — a set of r(f)-1 implicit choices: project 1 is preferred to projects
2, 3,..., i(f), project 2 is preferred to projects 3, 4,..., r(f), and so on until
the choice of project r(f)-1 versus r(f). In the first case, the choice set (C;)
consists of all r(f) projects evaluated in county f. In the second case, project
2 is considered chosen, while project 1 is considered unavailable, the choice
set (C,) consisting of the last r(f)~1 projects. In the last case, the choice set
(Cy(ry—1) consists of the two projects ranked r(f)-1 and r(f).

In this way, the mutual ranking of r(f) projects if “exploded” into r(f)-1
implicit choice situations. It has been shown (Chapman and Staelin, 1982)
that, under standard assumptions concerning the underlying utility functions
(independent and identically distributed random utilities following the dou-
ble exponential distribution), the r(f)-1 exploded choices can be treated as
statistically independent outcomes of a conditional multinomial logit proba-
bility process. The factors governing these choices can thus be analyzed by
means of standard logit modeling techniques, provided due account is taken
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of the gradually more restricted choice sets to be applied to the lower? ranked
projects.

Given, however, that the maximum number of projects ranked in any one
county is 99, yielding 98 implicit exploded choices among up to 99 alterna-
tives, it has been necessary to reduce and simplify the data for the purpose of
efficient estimation. We have done so by applying the method of alternative
sampling. For each project (except the last one in each county), a simple
random sample of (up to) ten lower ranked projects were sampled, form-
ing a choice set of (up to) eleven alternatives (projects), of which the first
one is always considered chosen. When there are less than ten lower ranked
projects left on the county list, all of these are “sampled”, forming a choice
set consisting of two to ten projects. It has been shown (McFadden, 1978)
that this procedure yields statistically consistent estimates of the logit model
parameters. When, as in our case, the method of sampling alternatives is sim-
ple random sampling, no correction factor is necessary in the logit model in
order to take account of the fact that the non-chosen alternatives are merely a
sample from a larger available set (Ben-Akiva and Lerman, 1985).

In this way our data set is reduced to 669 observations on choices among
(up to) eleven competing road investment opportunities. We analyze these
data by means of the ALOGIT software package.

5. Empirical results

In Table 2, two different rank-order logit models are shown. The “ample
model” accommodates a fairly large set of independent variables. In the
“parsimonious model”, only the significant coefficients from the ample model
have — by and large — been retained.

5.1. Impact of cost, benefit and project size

One of the more obvious hypotheses to test is that the priority ranking assigned
is determined in large part by the costs incurred and benefits derived from the
project, or simply by their ratio.

There are, however, several conceivable ways to formulate the relationship
between “utility” and cost/benefit, giving rise to varying economic interpre-
tations. Having experimented with various forms, we base our analysis on the
following, best-fit “logarithmic ratio model”.

Let the vector 7 of equation (3) be partitioned as follows:

=g 4
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Table 2. Rank order logit models of within-county road investment priorities. Coef-
ficient estimates, with standard errors in parentheses

Coeffi- Independent Alt.'  Ample model Parsimonious
cient no.  variable model
I In(COST) GE —0.1659 (0.0432) ~0.1592 (0.0366)
2 In(BENEFIT/COST) GE 0.08344 (0.0631) 0.1375 (0.0423)
3 BCRATIOZERO GE —-0.2455 (0.353)
4 In(USRBEN/BENEFIT) GE 0.0940 (0.0574) 0.1397 (0.0414)
5 USRBENZERO GE ~0.3436(0.243)
6 In(OWNBEN/BENEFIT) GE -0.0596 (0.0417) -0.0546 (0.0290)
7 OWNBENZERO GE -0.0996 (0.160)
8 In(ACCBEN/BENEFIT) GE 0.0866 (0.0442) 0.0367 (0.0299)
9 ACCBENZERO GE 0.2304 (0.192)
10 In(MUNREP) GE ~0.4596 (0.0748) ~(.4498 (0.0721)
11 MUNREPZERO GE 0.0131 (0.0997) 0.0273 (0.0982)
12 EARLY GE 0.8753 (0.175) 0.8710 (0.172)
13 STARTED GE 1.388 (0.194) 1.367 (0.191)
14 DECIDED GE 1.371 (0.408) 1.222 (0.397)
135 PLANREQ GE —0.3246 (0.100) -0.3339 (0.0994)
16 MAINROAD GE 0.3698 (0.110) 0.3486 (0.104)
17 CITY GE 0.1960 (0.167)
18 BIKEWALK GE 0.7126 (0.227) 0.5609 (0.194)
19 SAFETY GE 0.5767 (0.254) 0.4366 (0.235)
20 MOTORWAY GE -0.0667 (0.203)
21 SCNDRYRD GE 0.3975 (0.290)
22 NEWROAD GE (0.0380 (0.207)
23 PUBLIC GE 1.522 (1.29)
Log-likelihood -1368.73 -1372.60
P> 0.0846 0.0820
Units of observation 669 669
Parameters 23 14

Italics: Significantly different from zero at the 10 per cent level by a two-sided test.
Bold face: Significantly different from zero at the 1 per centlevel by a two-sided

test.

Here, k is thought of as the cost coefficient, § as a subvector of benefit
coefficients, and -y as a coefficient subvector covering all other aspects taken
into account in the decision process.

By the “logarithmic ratio model” we have in mind the following general
formulation:
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Vi = & + In(COSTy(k)) + 3 - In (

In simplified notation (suppressing subscripts and indices):

V = £ - In(COST) + 3 - In(BENEFIT/COST) + > 7 -%.  (6)
j
Does it matter to the decision maker whether the benefit is derived from, say,
travel time gains, reduced road maintenance expenditure, a lower accident toll,
or reduced noise? To address this question, we end up estimating a model in
which the gross benefit is subdivided into user benefit, owner benefit, accident
benefit and (the residual) noise-abatement benefit, as follows:

V = - In(COST) + f - In(BENEFIT/COST)
44, - In(USRBEN/BENEFIT) + £, - In(OWNBEN/BENEFIT)

+8; - In(ACCBEN/BENEFIT) + » ;- Xj (7
i

This formulation gives rise to a number of useful interpretations. Since &
is the partial effect of cost, given the benefit/cost ratio, it can be interpreted
as the effect of project size, i.e., the effect of benefit and cost increasing
proportionately. The effect is estimated at &£ = ~0.1592 (in the parsimonious
model), meaning that the log-odds of preferring a given project (1, say) to
some other project (j) is reduced by 0.1592 per cent for each per cent increase
in the size of project i (the odds elasticity?). Other things being equal, small
projects are preferred to large ones.

The effect of increased overall benefit, given constant cost, 1s estimated at
B =0.1375, with a 95 per cent approximate confidence interval ranging from
0.0546 to 0.2204.

As expected, increased payoff does tend to enhance a project’s priority.
But the effect is astonishingly small. To see this, consider two projects 1 and
j that are initially identical, each having a 50 per cent probability of being
preferred to the other. Now, suppose the benefit of project i is somehow
doubled, while all the other characteristics (including costs) of projects i and
j remain constant. This would cause the probability of preferring project i to
j to increase by a mere 2.4 per cent* (confidence interval from 0.9 to 3.8 per
cent). In other words, there would still be a 47.6 per cent probability for the
decision maker to prefer a project providing only half as much benefit as the
other, otherwise identical investment opportunity. Even a tenfold increase in
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benefit would, similarly, increase the choice probability by no more than 7.8
percentage points.

Now, imagine a project whose investment cost increases, while all other
attributes (including benefit) are kept constant. The relevant odds elasticity is
calculable as R—Bo = —0.2967 (confidence interval from —0.424 to -0.170).
This amounts to saying that, if the cost is doubled, while the benefit is
kept constant, the probability of preferring this project to another, equally
attractive one is reduced by 5.1 percentage points (confidence limits —7.3 to
-2.9 percentage points).

The fraction (BO/(/%—Bo) = —0.463 (confidence interval® from -0.617 to
—-0.310) has an interpretation as the marginal rate of substitution between a
(say) one per cent increase in benefit and a one per cent increase in cost.% The
analysis reveals, in other words, that in the mind of the decision maker, a —
say — ten per cent increase in benefit is “worth” no more than a 4.6 per cent
decrease in cost. Cost is, in a sense, about twice as important to the decision
maker as benefit.’ '

It is, however, fair to say that neither cost nor benefit seems to have any
major irfluence on decision making. It is striking to note that a (say) 10 per
cent increase in benefit (given cost) has no bigger effect on priorities than a
similar decrease in project size, 1.e., if both cost and benefit are scaled down
by 10 per cent.

The above estimates of the impact of project benefit on the priority ranking
apply in the case where all benefit components are assumed to change pro-
portionately. However, it does seem to matter to the decision maker whether
benefit increases as a result of higher road user surplus, growing road owner
benefit, or a reduction in accident cost. In general, road user benefit is valued
at a higher rate than safety or noise reduction benefits, which in turn are given
priority over road owner benefits. These differences are statistically signifi-
cant, as witnessed by the estimates of coefficients 3, §,, and (3 (referring
to equation 7).

The corresponding odds elasticities,® expressing the effects of changes
in USRBEN, OWNBEN, ACCBEN, and NOISBEN, are shown in Table
3. For each per cent increase in user benefit, the odds of preferring that
particular project increases by an estimated 0.1506 per cent, given that cost
and other benefit components are unchanged.” The estimated marginal rate
of substitution with respect to a one per cent increase in cost is —0.508.

More surprisingly, the effect of road owner benefit on ranking has the
counterintuitive sign. A reduction in road maintenance and ferry costs appears
to negatively affect priority ranking, other things being equal. This effect is
statistically significant at the 5 per cent level.

As for safety and noise reduction benefits, the effects are not significant.
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Table 3. Odds elasticities with respect to various benefit components, as
evaluated at overall benefit component shares

Benefit component Point 95 per cent confidence interval
estimate  Lower limit  Upper limit

User benefit (USRBEN) 0.1506 0.0687 0.2326
Road owner benefit (OWNBEN) -0.0526 -0.1047 -0.0005
Safety benefit (ACCBEN) 0.0392  -0.0128 0.0912
Noise abatement benefit (NOISBEN) 0.0003 -0.0019 0.0025

Italics: Significantly different from zero at the 10 per cent level by a two-sided

test.
Bold face: Significantly different from zero at the 1 per cent level by a

two-sided test.

5.2. Impact of non-economic factors

In addition to cost and benefit, we have included in the model a successive-
ly larger set of “auxiliary variables” (i.e., the x;s), to account for various,
potentially important considerations in the decision making process.

The simplest models, in which only cost, overall benefit, and a dummy for
zero benefit-cost ratio are included, explain a very small fraction of the total
variation (less than 0.6 per cent, as measured by the p> measure'®). Only the
cost term is statistically different from zero. When the benefit is decomposed,
only insignificant improvements in fit are seen.

Interestingly, however, as we add more “auxiliary” variables to the model,
the (absolute) estimated values and the statistical significance of the cost and
benefit coefficients tend to increase. Thus, far from removing explanatory
power from the cost and benefit factors, the addition of auxiliary variables
appears necessary in order for the significance of cost and benefit to be
revealed. When the auxiliary factors are not controlled for, however, the role
of cost and benefit is much harder to spot.

5.2.1. Geographic distribution
The introduction of a dummy variable (MUNREPZERO) capturing whether
the municipality concemed by a road project has already been represented
(“favored”) by a higher ranked project, improves the fit considerably. In such
cases, the chances are reduced for a second (or third, fourth,...) project located
in the same muncipality to receive a high priority, other things being equal.
An even stronger improvement in fit occurs when we enter into the model
the (log of the) number of times the same municipality is already represented
on the list of priorities (MUNREP). In these models, the MUNREPZERO
term becomes insignificant, meaning that there is no important difference
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between zero and one previous representation. However, as the same munici-
pality is represented more than twice, the decision maker appears increasingly
concernzad not to allocate an excessive amount of investment funds to one and
the same geographical area.!!

The coefficient of In(MUNREP) indicates that, as one doubles the number
of times a given municipality has so far been “favored” by a road project (say,
from 1 to 2, or from 2 to 4), the odds of allocating still another project to that
municipality are lowered by some 27 per cent (from, say, 1 to 2704498 -0 .732).
This corresponds to an almost 8 percentage point decrease in probability,
starting from an initial 50 per cent.

To produce an equivalent deterioration in odds through a cost alteration, the
cost would have to increase almost three-fold. Alternatively, the total benefit
of the project would have to be cut by 90 per cent.

5.2.2. Project type
Projects considered part of a main long distance itinerary road are given
enhanced priority, equivalent to an estimated 69 per cent cost reduction or
a more than 12-fold increase in benefit. Bicycle and walking paths are even
more popular with the decision makers, receiving a strengthened priority
equivalent to an 85 per cent cost cut or an almost 60-fold increase in benefit.
Projects classified as traffic safety measures also appear to receive strongly
enhanced priority, although this effect is just barely significant at the 5 per
cent level.

The following factors were found not to be significant (confer Table 1):
CITY, MOTORWAY, SCNDRYRD, NEWROAD, PUBLIC.!?

5.2.3. Planning requirements

Under Norwegian law, all land development and building activities are subject
to approval through detailed, local development plans or more general master
plans, as set out in the Planning and Building Act of 1985. For instance, in
order for a public authority to expropriate or acquire right of way across private
property, a local development plan approved by the municipality involved is
mandatory.

The NRP contains information as to the planning provisions required and
the planning documents available for each individual project. It turns out that
the existence of local development plans or road master plans per se does not
have a significant impact on ranking. However, if a local development plan is
indeed required, but lacking (PLANREQ = 1), then the odds of that particular
project are significantly reduced, by a rate corresponding to a more than
three-fold increase in cost, or a 91 per cent reduction in benefit. In essence,
when the required legal basis for a road investment is lacking, the project will
- not unexpectedly — in all likelihood be assigned a lower priority.
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5.2.4. Decision-making constraints

In some cases, the priority ranking between competing road investment
projects has to take account of certain constraints imposed, such as whether
or not the project has previously been approved by Parliament (DECIDED), if
it is scheduled to start already during (one of the) previous planning period(s)
(EARLY), or if construction work has in fact already begun (STARTED).

The estimated “value” of these constraints is such as to overrule almost
any difference in economic cost or benefit that might exist among the can-
didate projects. When, for instance, a project has already been approved by
Parliament, its odds are improved by an estimated factor equivalent to 98 per
cent cost cut or a 7 200-fold increase in benefit. Essentially, this means that a
project not yet approved by Parliament will hardly ever stand a better chance
than one which does enjoy previous approval, no matter how favorable the
cost-benefit assessment comes out for the former.

In some cases, Parliamentary decisions concerning a road investment
project have already been made, or construction may in fact have begun,
in which case the project must be completed in order for previous invest-
ments to pay off. As expected, such instances tend to receive a relatively high
priority. When the three variables EARLY, STARTED, and DECIDED are
added to the model, the fit improves by more than 4 percentage points (in

terms of p?).
5.3. Are cost-benefit analyses distrusted?

Although the benefit and, especially, the cost terms do come out as at least
marginally significant in models taking account of the more important con-
straints facing the decision maker, it is fair to say that the overall explanatory
power of the models if relatively low. The confidence intervals around the
benefit coefficient estimates are rather wide. The cost-benefit evaluation per-
formed does not seem to have any large bearing on the priority ranking done.
One reason for this might be that the decision maker, being aware of the errors,
inaccuracies and weaknesses inherent in the cost-benefit analysis, deliberately
chooses not to put too much weight on its outcome.

If it is true that the cost-benefit analysis lacks credibility with the decision
maker, one might suspect that the objective characteristics of the investment
project, as expressed not in monetary terms, but in their “natural” units of
measurement, would perhaps be able to explain a larger share of decision-
making behavior. In other words: do the crude input factors into the benefit
evaluation carry more weight with the decision maker than the monetary
benefit derived from them? To study this possibility, we estimate a set of
“heuristic” (“non-economic”) rank order logit models, in which the economic
benefit terms have been replaced by their physical (engineering) counterparts,
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Table 4. Heuristic, rank order logit models of within-county road investment priori-
ties. Coefficient estimates, with standard errors in parentheses

Coeffi- Independent variable Alt.'  Ample model Parsimonious
cient no. model
1 COST (100 mNOK) GE -0.1803 (0.0671) —0.1846 (0.0619)
2 ACCIDENTS (1000} GE 0.5666 (1.27) 0.9562 (1.14)
3 NOISEHOUSES (1000) GE ~0.0553 (0.148) -0.0343 (0.151)
4 AADT (million) GE 3.1490 (8.16)
5 TIMEGAIN (1000 min) GE -0.0552 (0.664)
6 TIMEGAIN x AADT** GE —0.4956 (0.288) 04663 (©.273)
7 AXLOADKMS (1000) GE 0.2471 (0.882)
8 AXLOADKMS x AADT* GE 0.0147 (0.349) 0.0602 (0.288)
9 KMSFASTER (1000) GE ~0.8967 (2.69)
10 KMSFASTER x AADT* GE 0.1589 (0.236)
1t MUNREPZERO GE 0.2777 (0.0913) 0.2773 (0.0911)
12 EARLY GE 0.9280 (0.177) 0.9227 (0.175)
13 STARTED GE 1.203 (0.196) 1.216 (0.192)
14 DECIDED GE 1.461 (0.447) 1.485 (0.444)
15 PLANREQ GE -0.3263 (0.0980)  —0.3283 (0.0979)
16 MAINROAD GE 0.1666 (0.103) 0.1799 (0.0993)
17 CITY GE -0.0246 (0.175) -0.0079 (0.159)
18 BIKEWALK GE 0.5609 (0.183) 0.5638 (0.182)
19 SAFETY GE 0.4762 (0.205) 0.4835 (0.206)
20 BLACKSPOTS GE 0.1630 (0.080) 0.1648 (0.079)
Log-likelihood -1401.44 -1372.60
p? 0.0627 0.0820
Units of observation 669 669
Parameters 20 15

Italics: Significantly different from zero at the 10 per cent level by a two-sided test.
Bold face: Significantly different from zero at the 1 per cent level by a two-sided

test.
* Million vehicle kilometers.
**Mi.lion vehicle minutes.

such as the travel time gain per road user (minutes), the expected traffic volume
(vehicles per day), the expected number of accidents avoided, the number of
houses less affected by noise, the number of road kilometers with increased
axle load tolerance, the number of road kilometers allowing for higher speed,
the number of accident blackspots treated!? etc. The results of this exercise
are shown in Table 4.

A linear!? cost term has been retained even in the “non-economic” models,
together with the significant variables from the economic models. The substi-
tution of crude, project attribute input factors for the calculated cost-benefit
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output does not, however, improve the model’s explanatory power. With one
exception, all the project attributes considered are statistically insignificant,
and the one significant coefficient has the “wrong” sign. Our heuristic models
are able to explain no more than 6 to 7 per cent of the variation in priority

ranking.

6. Testing for strategic priority assignment

Prior to drawing up their list of priorities, each regional public roads agency
receives a preliminary investment budget from the central agency. For the
1990-93 planning term, the preliminary budget of each regional office con-
tained three alternative spending limits. One of these was designated as the
main alternative, or the “100 per cent” spending limit. The other two were
20 per cent below and 20 per cent above the 100 per cent limit, respectively.
These three alternative spending limits divide the investment projects into four
classes: (1) “safe projects”, i.e., projects that were assigned priority within 80
per cent of the main spending limit; (2) “marginal projects if spending is cut”,
i.e., projects ranked within the 80 to 100 per cent range of the main spending
limit; (3) “marginal projects if spending is increased”, i.e., projects ranked
within the 100 to 120 per cent range, and (4) “less eligible projects”, 1.e.,
projects with a priority too weak to be comprised by 120 per cent spending
limit.

Funding for marginal projects is, ideally, to be based strictly on their benefit-
cost ratios. The central agency of the Public Roads Administration is expected
to compare marginal projects from all counties and provide funding for those
which pass the cost-benefit test. There is thus an incentive for each county to
place some of its better projects in the marginal categories, in order to maxi-
mize the chances of obtaining funds in excess of the 80 per cent limit, during
the final round of appropriations undertaken by the national authorities (in
principle the Parliament). Elvik (1995) has demonstrated how the distribution
of state funds for national road investments between Norwegian counties can
be understood in terms of a vote trading (“log rolling”) process.

We would like to test the tenability of such a hypothesis concerning regional
decision-making behavior. In the following, we therefore set out to explain
how projects are assigned to one out of the four spending limit classes. To this
purpose, we estimate a traditional, four-alternative multinomial logit model,
using each project contained in the NRP file as one observation.

As for the rank order logit models, we start out by estimating a fairly
comprehensive, exploratory (‘“ample”) model. This model contains 43 free
parameters, all of which are alternative-specificl, although in some cases the
value is constrained to be equal between two or three alternatives.
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Many of these parameters are, however, not significantly different from
zero or from each other. By applying a suitable set of additional parameter
constraints we are able to reduce the number of parameters to 16, without
a statistically significant drop in explanatory power (p-value of 0.51 by the
log-likelihood chi-square test). Hence we arrive at the “parsimonious” model.

Both models are exhibited in Table 5.

For all coefficients, we define class 2 as our reference class, meaning that
all variables with non-zero coefficients enter the “utility” functions of classes
1, 3 or 4, expressing partial effects on the log-odds with respect to class 2.

The size of the project (as measured by its COST) has a negative impact on
the probability of being assigned to the top priority class (1), but a positive
impact on the probability of classes 3 or 4, as compared to class 2. In the
parsimonious model we constrain the coefficients assigned to classes 3 and
4 to be equal. The coefficient sign pattern is consistent, in that the larger the
project is, the weaker priority it tends to receive. This result is well in line
with the rank order model estimates.

With respect to the benefit-cost ratio, however, certain contradictions appear.
There is no significant tendency to assign “good” projects (i.e., projects with
a high benefit-cost ratio) to the top priority (“safe”) class rather than to the
second priority (“marginal”) class, as one would expect from a decision maker
aiming to maximize expected benefit within a given investment budget, and
as one would also expect in view of the rank order model estimates. On the
average, the projects of class 2 are neither more nor less profitable than those
of class 1.

While, in the mutual ranking of projects, decision makers tend to assign
somewhat enhanced priorities to the more profitable ones, it may appear as
if this ordering takes place only within each priority class. A certain number
of fairly good projects may seem to be kept in reserve for class 2. There is,
however, a certain (significant) tendency for less socially profitable projects
to end up in the weak priority classes (3 or 4).

The ample model reveals no statistically significant correspondence between
type of benefit accruing and the priority class assignment. However, the sign
pattern emerging is generally consistent with the findings of the rank order
logit model, in that road user and safety benefits tend to improve the priority,
while the opposite is true of road owner benefits. In the parsimonious model,
all these coefficients are constrained to zero.

As in the rank order model, decision making constraints such as previous
Parliamentary approval or onset of construction is seen to have a marked
impact on priority class assignment, almost all projects subject to this kind of
constraints being assigned to the “safe” priority class, and very few (if any)
to classes 3 or 4.
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Table 5. Logit models of priority class assignment. Coefficient estimates, with standard

errors in parentheses

Varno.  Independent variable Alt.!  Ample model Parsimonicus model
1 1 -0.2383 (0.0822) -0.1809 (0.0700)
2 In(COST) { 3 0.1665 (0.0983)} 0.1426 (0.0723)
3 4 0.0557 (0.113)

4 1 -0.0686 (0.0892) -0.0064 (0.0707)
5 In(BENEFIT/COST) { 3 -0.2279 (0.109)} 01796 ©.0750)
6 4 -0.2163 (0.134)
7 1 0.0285 (0.106)
8 In(USRBEN/BENEFIT) {3 0.0377 (0.135)
9 4 —0.1306 (0.150)

10 1 -0.0821 (0.0680)

11 In(OWNBEN/BENEFIT) { 3 -0.0885 (0.0791)

12 4 0.0767 (0.114)

13 1 -0.1017 (0.0775)

14 In(ACCBEN/BENEFIT) {3 -0.1000 (0.0925)

15 4 —0.0956 (0.116)

16 EARLY { 1 1.165 (0.421) 1.172 (0.416)

17 34  —1.678(0.718) ~1.586 (0.715)

18 STARTED { 1 1.612 (0.477) 1.592 (0.474)

19 3,4  =2719(1.13) ~2.887 (1.12)

20 DECIDED 1 1.436 (0.852) 1.441 (0.840)

21 1 -0.4346 (0.243)

22 PLANREQ { 3 -0.6275 (0.313)} ~0.4224 (0.229)

23 4 0.0521 (0.357)

24 1 0.5427 (0.238)

25 MAINROAD { 3 0.2880 (0.232)} 0.3176 (0.207)

26 4 0.1255 (0.333)

27 1 -0.2243 (0.341)

28 CITY { 3 —0.7425 (0.434)} -0.2780 (0.285)

29 4 -0.3332 (0.607)

30 (1 0.7305 (0.405) 0.5157 (0.371)

31 BIKEWALK { 3 -1.003 (0.813)} 1221 (0.668)

32 4 -1.310 (1.10)

33 1 0.9770 (0.490)

34 SAFETY { 3 0.7829 (0.644)} 0.7358 (0.427)

35 4 0.9955 (0.627)

36 1 0.4576 (0.506)

37 MOTORWAY { 3 0.8204 (0.544) 0.8135 (0.455)

38 4 1.420 (0.827) '

39 SCNDRYRD { 1 0.4929 (0.585)

40 34  -0.8338(0.880)
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Table 5. Continued

Varno.  Independent variable  Alt.!  Ample model Parsimonious model
41 1 -0.2569 (0.453)
42 NEWROAD 3 -0.5555 (0.561)
43 4 -0.7707 (0.647)
44 In(SIZE1)* (i=1,2,3,4) GE I (by constraint) 1 (by constraint)
Log-likelihood -701.49 —714.55
p* 0.206 0.191
Units of observation 686 686
Parameters 43 16

ltalics: Significantly different from zero at the 10 per cent level by a nvo-sided test.
Bold face: Significantly different from zero at the 1 per cent level by a two-
sided test.

“The size of the indicated budget differs greatly between counties, and so does the
monetary value of the projects proposed. Some counties propose no more projects
that can be accommodated within the suggested budget — others list almost twice
as many. To take account of the fact that the priority classes differ in size — for one
and the same county as well as between counties ~ we include into the logit model
a set of size variables, one for each “utility” function (not to be confounded with
project size, as characterized by its cost and benefit). For instance, for a county
having proposed projects corresponding to 112 per cent of the indicated budget,
hence depleting class 1 and 2, but not class 3, the SIZE1 variable (entering the
“utility” function of priority class 1) would equal 0.8, while SIZE2 = 0.2, and
SIZE3 = (0.12. Alternative 4 has zero size and is defined as unavailable, having a
zero probability of being “chosen”. In the above example, therefore, if no other
independent variables had explanatory power, or were included in the model, the
probability of falling in class 1 would be 0.8/(0.8 + 0.2 + 0.12) = 0.714. This
appears reasonable since, in this case, class 1 is large enough to accommodate
exactly 71.4 per cent of the investments considered. If, in other words, projects
were ranked through an entirely random procedure, the probability for a given
project to end up in class 1 would be 71.4 per cent.

Interestingly, a number of variables appear to affect the assignment to
classes 1, 3 and 4 in about the same way, meaning — in essence — that class
2 (“marginal projects if spending is cut”) is the “odd man out” compared
to the other classes. For instance, if a project is classified as a “traffic safety
measure”’ (1.e., if the SAFETY dummy is one), the log-odds of being assigned
to class | versus class 2 is improved (by 0.997 according the ample model).
But so are the log-odds of classes 3 and 4 (with respect to class 2)! Indeed, the
coefficient pertaining to classes 1, 3 and 4 are barely different, meaning that
they differ from class 2 in about the same way. (Hence, they are constrained
to be equal in the parsimonious model).

A similar pattern of effects is seen for other variables as well. The MAIN-
ROAD, CITY, MOTORWAY, and PLANREQ criteria all exhibit effects that
are not statistically different between alternatives 1, 3 and 4. They are, howev-
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er, in most cases statistically different from zero, meaning that the probability
of being assigned to class 2 is, indeed, affected.

In summary, there appears to be a tendency, among regional road authorities,
to avoid the assignment of motorway, road safety, or main long distance
itinerary road projects to priority class 2 (“marginal projects if spending is
cut”). Projects for which the legally required area development plans are
currently lacking, tend, however, to end up in this category. The same may
be true of projects located to major urban areas, although this tendency is not
statistically significant.

For projects characterized as bicycle and walking paths, the pattern of
effects is distinctly different. These tend to be assigned to the “safe” priority
class. For given size and benefit-cost ratio, bicycle and walking paths also
have a lower than average risk of being placed in the weak priority classes
(3 or 4). In other words, bicycle and walking paths are consistently given
enhanced priority compared to other types of construction work.

7. Discussion

Why is it that our models are unable to explain a larger part of decision-
making behavior? If the variables included in our analyses fail to explain the
priorities, what does? Is the process of assigning county level priorities to
competing road investment projects essentially a random one, with only a
small systematic component?

In a recent interview survey among members of the Norwegian Parliament
(MPs), the issues of road investment decisions and the use of cost-benefit
analyses were raised (Nyborg and Spangen, 1996). Although their study
focuses on the final, national Parliamentary decision making rather than on
the foregoing regional planning procedure, to which our data refer, we believe
their findings to have substantial relevance as a source of understanding even
the local decision-making process. While the National Road Plan is being
drawn up and prepared by the Public Roads Administration, the members of
the Parliamentary Transport Committee visit every county, discuss with local
politicians and administrators, and so form their own opinion on the projects
being proposed. Also, the priority setting within each county is not an entirely
bureaucratic process. The proposals made by the regional road agencies are
submitted to and discussed by the County (provincial) Assembly, before being
amended and passed on to the central authorities. Thus, the national political
and local bureaucratic levels of planning are by no means disconnected. Local
planners, being well acquainted with the political interests and pressures being
exercised in one or the other direction, and having learned from experience
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what kinds of projects are likely to obtain political assent, adapt their list of
priorities to the assumed politically acceptable or feasible.

Most members of Parliament accept the benefit-cost ratio as an important
aspect of aroad investment project, although none of them would think of it as
the only relevant criterion. As several MPs would put it: If decisions were to
be made based on the benefit-cost ratio alone, politicians would be redundant.
Some MPs were outright negative to the use of cost-benefit analysis, seeing
it as an attempt to quantify the unmeasurable.

Several MPs expressed concern over the fact that the user benefit was
not decomposable between corporate and private road users. While many
politicians would put considerable emphasis on time gains benefiting the
local business community, they felt that leasure time gains among private
individuals were a lot less tangible, and perhaps should not be valued (above
zero) at all.1?

Income distribution 1s an important issue among politicians. In Norway, this
18 particularly so when distribution is linked to the geographic dimension, as
in the case of competing road investments. The MUNREP effect estimated by
us is but one indication of this. More importantly, perhaps, many MPs stated
that they would give special precedence to projects benefiting economically
depressed areas.

Now, economic depression is likely to be inversely related to the user ben-
efit derived from a local road investment, since the industry and population
base, and hence the traffic volume to which time gains apply, would tend
to be smaller in such areas than in the more prosperous ones. To the extent
that distributional considerations are playing an important role even among
local planners, it seems quite probable that this could explain the apparent-
ly low emphasis put on benefit during the ranking procedure. We do not,
unfortunately, possess the information necessary to test such an hypothesis.

Several MPs characterize the road investment budget as “comfortable”, a
rather rare occurrence within the public sector. Again, if this perception is
reflected even among local planners, it may help explain why cost does not
come out as a more decisive factor. Since almost all the road investment
projects evaluated by the public roads administration are sooner or later
carried out (i.e., in the course of two or three consecutive planning periods),
the incentive to screen projects in a highly conscientious and meticulous
manner ray appear to be relatively weak.

Other issues considered important by the MPs interviewed were: envi-
ronmental effects (noise, scenery, water resources, recreation areas, nature
conservation), public transportation level-of-service, school-children’s safe-
ty, bicycle and pedestrian paths, main long distance itineraries, and rockslide
prevention, to mention some of the most important issues. Some of these
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have been included in our model, others are rather judgemental or hard to
formalize and hence have not been quantified in the National Road Plan.

Odeck (1996) administered a questionnaire to the regional road agencies,
in an attempt to establish their ranking criteria by direct questioning. In
descending order, the following criteria were found: (i) road safety, (ii) noise,
(i) user benefit, (iv) air pollution, (v) system continuity, (vi) regional eco-
nomic development, (vii) local or national political wishes, (viii) benefit-cost
ratio, (ix) seniority of proposal (from previous planning periods), and (x) rela-
tion to other modes of transport. This “stated preference” is in rather strong
contradiction with our “revealed preference” estimates, which indicate a quite
weak dependence on the three topmost criteria on the list.16 Odeck (1996)
remarks that criteria (1), (i), (ii), (vi) and (viii) are all embedded in the benefit-
cost ratio and that considering these in addition to the economic evaluation
would imply double counting.

Odeck also asked the regional road agencies why they did not use the
benefit-cost ratio in their ranking. He cites the following two most frequent
answers: (a) that road investments should be used to foster economic develop-
ment in depressed areas, and (b) that certain quite important (environmental)
elements are not included in the cost-benefit evaluation.

One notes that these arguments are well in accordance with the views
expressed by certain members of Parliament.!”

8. Conclusions

Our study is concerned with the priority ranking between candidate, region-
al road investment opportunities in Norway. Using a (near) maximum of
available information from the National Road Plan, we find, unlike previ-
ous studies, that economic cost and benefit do have a statistically significant
impact on the ranking. In absolute terms, however, their impact is rather small,
and in no way decisive. Cost is revealed to be about twice as important as
benefit. Among the benefit components, road user benefits (reduced vehicle
operating costs, travel time savings, and improved axle load tolerance) are the
most decisive, while road owner savings in the form of reduced maintenance
or ferry operating costs appear to have a surprising negative effect on ranking.
Safety or noise abatement benefits have no significant effects.

There are indications that regional decision makers attempt to spread the
opportunities fairly evenly among the municipalities belonging to the county.
Chances are that no one municipality will be “favored” by more than a few
projects, no matter how socially profitable its candidate projects may be.
Also, there are strong indications, based on surveys within the bureaucratic as
well as the political system, that income distribution concerns lead planners
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to favor projects benefiting economically depressed areas. This would have
the likely (partial) effect of systematically promoting projects with weak
profitability.

Confronting two different lines of analyzing the road investment priority
settings, we find certain (weak) indications that regional road authorities
do apply a kind of strategic priority assignment, allocating certain types of
projects to the competitive (“marginal”) priority class. There is no sign that
economically stronger projects (i.e., projects with a favorable benefit-cost
ratio) have a higher probability of being assigned to the marginal class. On
the other hand — they do not have a lower probability of ending up in this
category, either, as one would expect under (non-strategic) economic welfare

maximization.

Notes

1. The variables of a multinomial logit model may be generic (GE) or alternative specific.
A generic independent variable is a variable whose coefficient is constrained to be equal
across all alternatives. In order for a generic coefficient (ny, say) to be identifiable, the
variabie (X, ) must exhibit some degree of variation across alternatives, i.e., we must have
Xgn(1) # Xk (j) for some triplet (i.j,n). An alternative-specific variable enters the respective
utility functions (alternatives 1,2,3,4,..., say) with unequal coefficients. Here, identifiability
generally requires variation, not across alternatives, but across the units of observation,
i.e., we must have Xkm (j) 7 Xkn(j) for some pair (m,n). (More precisely, for each alternative
except one, it is possible to identify the coefficient of one and only one variable which
does not vary across the sample — the alternative-specific constant.)

2. We refer to project j as “lower ranked” than project i if i < j, i or j being the priority
assigned to the two projects. That is, we visualize a list in which priority 1 is on top, while
the least attractive project (priority r(f)) is placed at the bottom.

3. In the logit choice model, the log-odds between any two alternatives is a linear function
of the parameter vector 7):

K
In[pa(i)/Pa()] = Vin ~ Via = > m[xkn(i) — %n ()], (ND)
k=1
The (d:rect) odds elasticity with respect to a given attribute xiq (i) is therefore given by
a(?n(})) (Pn(})) _ () N2
% (i) Xm(i) TxXknll). (N2)

If x¢a(i) happens to be a logarithmic function (x¢n (i) = In[ya(i)], say), then we can write

(i) n (i)
460 / (&8)
= (N3)

Bya(i) W@

i.e., the odds elasticity with respect to y,(i) is a constant and given by the corresponding
logit coefficient.
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4. If the two alternatives (i and j, say) are initially equally attractive, we have Vi, = Vj,.

Assume, in keeping with the notation of the previous note, that our variable y.(i) = e ()
somehow increases by a factor ¢. The odds are then changed from 1:1 to c™:1, the new
conditional probability of choosing alternative i (given i or j) being calculable as

pa (i) c
- — = . N4
NOETXORTES (N
The percentage point increase in the conditional probability, compared to the initial, 50
per cent probability, is then:

(N5)

n=100. [ !
a(Yac . ) - : [an T 2]
Puttingc =2 and gy = Bo =0.1375, we have a(y,2:1) =-2.4 in this case.

5. To calculate the variance of Bo/(A—0B0) we use the Taylor approximation var(x/y) =
;‘, [var(x) - Zicov(x, y) + i—i—var(y)} , yielding, in the case x = By and y = & — Bq,

Bo 1 o By 2Bofeov(aBo)—var(30)} | B {var(R)tvar(Bp)—2eov(4.fo) }

R—Bo)] ~ (k=Bo)? (R=50)? + (=—Bp)?

6. Under the assumption that decision makers are indeed maximizing some notion of utility,
as formalized in the multinomial logic choice model (Section 4.1 above), one can derive
marginal rates of substitution (MRS) between the various attributes entering the utility
functions estimated:

var |:

BV'n
J = % = SJ(Kh,Xk)(Say)' (N6)

OVin
MRS[xm (), X ()] = ui ,
[ h“(.'): 1\110)] axhn(J)/axkn(J)
The decision maker trades a unit of attribute h against a unit of attribute k at a rate given
by the ratio between their respective coefficients.
In the case of logarithmic variables, say xun (i) = In[z,(i)] and xka (1) = In[ys (i)], we obtain

Th Y
si(z,y) = & . 2. N7
i(2,5) ™ z (N7)
Here, the MRS depends on the initial value taken on by either variable. It is, however,
invariant as expressed in terms of relative (or percentage) changes. Suppose we compare a
(say) c-fold change in z with a c-fold change in y (e.g., take ¢ = 1.01 and compare one per
cent changes). These two changes are traded against each other at a constant rate given by:

mh-[In{c-z) —In(z)] _ m-In(c) _m
= = =, (N8
m-[In(c-y) —In(y)]  m-In(c)

7. Since we are reasoning in terms of relative (percentage) changes, this rate of substitution
does not necessarily mean that a dollar earned is worth less than half a dollar spent — it
might simply mean that benefits are generally only half as large as cost. Such is, however,
not the case. The sample mean benefit-cost ratio is about 1.4. In our alternative, “linear
additive” formulation of our rank order logit model the dollar-to-dollar rate of substitution
between benefit and cost comes out even smaller (in absolute value), viz. at -0.22.

8. These odds elasticities are given by the formula

3
g ( ) pa (i) (ﬁo-Z@) bix
(Pn(J)) /(Pn(’)) _ ,Bk+ i=] =5k(say),(k= 1’2,3’4) (N9)

Obix bix b;
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where by is the k’th benefit component, b; is the total benefit of project i, and B are the
benefit coefficients as defined in the parsimonious rank order logit model (equation 7). By
convention, A4 =0, the (residual) noise benefit coefficient. Note that the elasticity depends
on the share by./b; of total benefit pertaining to the k’th benefit component. As a realistic
numerical example, we use the overall sample totals 3 | by/ D, bi in our calculations.
As summed through all the projects considered, user benefit represents 70 per cent, road
owner benefit 13 per cent, accident reduction benefit 16 per cent and noise reduction

benefit 2 per cent.

. Total benefit is, however, assumed to increase in accordance with the change induced, i.e.,

b%/ one per cent of the initial user benefit.
p* is an informal goodness-of-fit measure, defined by

2 _ . #)
P = —my

where £(n) is the log-likelihood function, which is maximized for 7) = 7.

To avoid circularity of argument, whenever a *“non-chosen” project is located in the same
municipality as the “chosen” project, this variable is corrected so as to take on identical
values as between the “chosen” and “non-chosen” project. Without this correction, the
“non-chosen” project would in all of these cases receive a higher value on the MUNREP
variable than the “chosen” one, simply by construction, translating into a spuriously
significant coefficient.

Note that cases in which there are zero previous representations have been coded so that
MUNREP = 1, making the logarithmic transformation allowable. The difference between
zero and one representation is captured by the MUNREPZERO dummy.

Models including even larger variable sets than the “ample” model were also explored,
however without providing significantly improved explanatory power.

An accident blackspot is defined as a maximally 100 m long road section in which four or
more injury accidents have occurred during 1983-86, or a maximally 1 000 m long road
section with ten or more injury accidents.

In these models, the linear formulation appears superior to the logarithmic one.

The cost-benefit analyses do, in fact, distinguish between these items, business travel time
being valued at 3.8 times the (per person) value of commuting time and 6.7 times the
value of other (leisure) travel time. However, the resulting composite benefit mesure is not
itemized in the final National Road Plan.

Odeck’s (1996) questionnaire pertains to the 1994-97 planning period, while our data refer
to the previous planning period. In principle, this could explain the discrepancy of results.
There are reasons to doubt, however, that planning practices have changed substantially
between the two planning periods.

As for argument (a), however, one may note — again — that this item is, at least in principle,
included in the cost-benefit evaluation, and, secondly, that there is very little scientific
or empirical evidence supporting the claim that road construction does promote regional
economic development in Norway (Lian, 1995).
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Abstract—Road accident counts are influenced by random variation as well as by various systematic, causal
factors. To study these issues, a four-country, segmented data base has been compiled, each segment consisting
of monthly accident counts, along with candidate explanatory factors, in the various counties (provinces) of
Denmark, Finland, Norway, or Sweden. Using a generalized Poisson regression model, we are able to decom-
pose tae variation in accident counts into parts attributable to randomness, exposure, weather, daylight, or
changing reporting routines and speed limits. To this purpose, a set of specialized goodness-of-fit measures have
been developed, taking explicit account of the inevitable amount of random variation that would be present in
any set of accident counts, no matter how well known the accident generating Poisson process. Pure randomness
is seen to ‘‘explain’’ a major part of the variation in smaller accident counts (e.g. fatal accidents per county per
month), while exposure is the dominant systematic determinant. The relationship between exposure and injury
accidents appears to be almost proportional, while it is less than proportional in the case of fatal accidents or
death victims. Together, randomness and exposure account for 80% to 90% of the observable variation in our
data sets. A surprisingly large share of the variation in road casualty counts is thus explicable in terms of factors
not ordinarily within the realm of traffic safety policy. In view of this observation, it may seem unlikely that
very substantial reductions in the accident toll can be achieved without a decrease in the one most important

systematic determinant: the traffic volume.

1. INTRODUCTION: THE NEED TO
UNDERSTAND ACCIDENT COUNTS

Road accident statistics are, understandably, the
subject of considerable interest on the part of media,
policy makers, organizations, and the general pub-
lic. Instances in which accident counts are, for some
reason, unusually high receive particular attention.
Such cases are almost invariably interpreted as a
change in the underlying accident risk and tend to
generate some form of public action or outcry.
But accidents counts are influenced by numer-
ous factors other than the risk level. First and fore-
most, they are subject to random variation. Second,
they are strongly influenced by—perhaps almost
proportional to—exposure levels. Third, they are
affected by natural phenomena like weather and day-
light. Fourth, they depend on the accident reporting

routines currently in effect and on the changes oc-
curring in these routines over time.

The aim of this research has been to assess how
much variation in the accident counts is typically
attributable to the above four general factors. Only
when all of these factors have been controlled for
can we interpret changes in accident counts as attrib-
utable to changes in risk, i.e. in the expected (long-
term) number of accidents or victims per unit of
exposure.

2. APROBABILISTIC CAUSAL LAW
GOVERNING ROAD ACCIDENTS*

Accident counts taken at given points or
(smaller) segments of the road system typically ex-

*This discussion draws heavily on the arguments put forward
by Fridstrgm (1991, 1992) and Fridstrgm and Ingebrigtsen (1991).
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hibit a quite pronounced and apparently random
variation from one time period to the next.

Yet, the number of accidents recorded within
reasonably large geographical units (e.g. all of Swe-
den) appears to be almost constant from one year
to the next. There is, in general, a striking stability
observable in highly aggregate accident counts.

Obviously, there must be a reason why aggre-
gate accident data exhibit such striking stability.
Also, there must be areason why accidents are more
frequent in some places or areas than in others. How
can the idea of unpredictability and randomness be
reconciled with the assertion that accidents have
causes, which, if eliminated or weakened, would
enable us to reduce the accident toll?

Following the spectacular success of Newton-
ian mechanics, the notion of causal relations as nec-
essarily deterministic went practically unchallenged
for almost two centuries. With the advent of quan-
tum mechanics the situation was, however, radically
changed. The behavior of elementary particles is not
explained by modern physical theories. Indeed, the
predominant view of physical scientists today is that
their behavior cannot be explained or predicted. It
is not only epistemically, but objectively (ontologi-
cally) random in character, i.¢. the unpredictability
of elementary particles is a feature of the world as
it really is, and not only of how we (fail to) under-
stand it. It is not merely a reflection of our incom-
plete knowledge or measurement technology. No
matter how far science proceeds, we would not—ac-
cording to this tenet—be able to predict events at
the micro (particle) level.

However, the collection of elementary particles
behaves in a perfectly predictable and stable way,
so that the matter made up by the thousands and
millions of particles exhibits, in fact, known proper-
ties. That is, the properties are known up to a ran-
dom ‘‘disturbance’’ term, with a given probability
distribution. For instance, a radioactive isotope de-
cays, by the emission of neutrons, towards a stable
form. It is impossible to say when a specified atom
of the isotope will decay, but if we observe a large
collection of atoms, we can predict, with astonishing
(and known) precision, how long it will take before
half of them have decayed. Archaeologists take ad-
vantage of this fact to date their finds by means of
the so called C,, method.

Quantum mechanics therefore introduces an
unavoidable element of unpredictability and ran-
domness in science. This has had profound implica-
tions for the way in which we view the world as
well as for the ways in which we attempt to learn
about it. It has become generally accepted among
physicists and philosophers of science that causal

explanations need not have the form of deterministic
relationships in order to be considered complete
(Suppes 1970; Papineau 1978, 1985; Salmon 1984;
Cartwright 1989). Probabilistic laws of causation,
leaving a certain amount of variation ‘‘unex-
plained”’, are good enough. Certain laws and phe-
nomena are—in the words of Salmon (1984)—*‘irre-
ducibly statistical’’ in nature, i.e. they include an
objectively {ontologically) random component. In
such cases, any attempt to explain more than a
certain amount of variation would be futile. If “*suc-
cessful”’, such explanations would necessarily in-
volve a fallacy, in that certain empirical correlations
resulting from sheer coincidence have been misinter-
preted as causally determined.

How does this carry over to the social or behav-
ioral sciences? The use of random disturbance terms
and probabilistic modeling has become common-
place in economics as well as in other social science
disciplines. To the extent, however, that the human
being is believed to have a free will, it seems hard
to argue that the behavior of the elementary units
of society (i.e. its individuals) is random in any other
sense than being unknown or unpredictable to the
analyst. The collection of individuals may very well
behave according to certain social or economic
laws, knowable up to a margin of statistical ‘‘error’’.
This error is, however, epistemic rather than
objective.

In the case of road accidents, on the other hand,
there seems to be something more to be said. Al-
though accidents are the result of human choices
and behavior, they are not chosen {(except for sui-
cidal ones). On the contrary—when an accident hap-
pens, it is because certain road users (the accident
victims) did not succeed in avoiding it, although they
certainly did want to. Accidents are the uninten-
tional side effects of certain actions taken for other
reasons than that of causing injury or damage. They
are random and unpredictable in the striking sense
that had they been anticipated, they would most
probably not have happened. Each single accident
is, in a sense, unpredictable by definition. We ven-
ture the assertion that, nowhere within the realm
of behavioral science, is there a set of phenomena
coming closer than road accidents to being objec-
tively (ontologically) random in character. No mat-
ter how much we learn about accident generating
mechanisms or countermeasures, we would never
be able to predict exactly where, when, and by
whom the single accident is going to occur. Acci-
dents are random in a much more fundamental sense
than the conscious choices ordinarily made by social
or economic agents. The best we can hope to
achieve, is to predict their approximate number.
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This suggests that any analysis of the accident
generating process should be based on an explicitly
probabilistic model—a(n irreducibly) statistical
law—according to which single events may occur at
random intervals; however, with an almost constant
overall frequency in the long run. Although the sin-
gle event is all but impossible to predict, the collec-
tion of such events may very well behave in a per-
fectly predictable way, amenable to description by
means of precise mathematical-statistical relation-
ships. We believe that this principle applies to traffic
accidents as it does to quantum physics.

We can, through the design of road systems and
vehicles and through our choice of behavior as road
users, influence the probability of an accident occur-
ring, thereby altering the long-term accident fre-
quency. This long-term accident frequency—the ex-
pected number of accidents per unit of time—we
prefer to think of as the result of a causal process.
This process accounts for the rather striking stability
observable in aggregate accident data, in which the
random factors (‘‘noise’’, ‘‘disturbance’’) having a
decisive effect at the micro level, are ‘‘evened out”’
by virtue of the law of large numbers. The causal
process determines the expected number of acci-
dents, as a function of all the factors making up the
causal set (the causes).

Now, let A(r, t) denote the expected number of
accidents occurring during period 7 in region r. The
expected number of accidents is, of course, not a
constant—it varies in time and space, i.e. with r and
t. We shall refer to this variation, attributable to the
various causal factors, as systematic. Unlike the
random or pure chance variation, the systematic
variation can—in principle—be influenced and con-
trolled. Only the systematic variation is of interest
from a policy point of view.

Assume that the probability that an accident
occurs in area r during a given (short) time interval
is constant throughout period ¢, and independent
of any previous accident events. In this case the
observed accident number (y(r,7), say) can be
shown to foliow a Poisson probability law, given by

m —A(rt
Ply(r,)=m}= DI e 270 ).
m!

Although in practice we will be working with
observation periods as long as one month, the as-
sumption of constant accident probability through-
out the observation period is, in fact, an innocuous
one. This is 50 on account of the convenient invari-
ance-under-summation property of the Poisson dis-
tribution: any sum of independent Poisson variates
is itself Poisson distributed, with parameter (A) equal

to the sum of the underlying, individual parameters.
Thus all we need to assume is that, for some very
short time interval (say, a minute or a second), the
accident probability can be considered constant and
that events occurring during disjoint time intervals
are probabilistically independent. In such a case the
number of accidents occurring in a given region r
during a given month ¢ will, indeed, be Poisson dis-
tributed with some (unknown) parameter A(r,z).

The Poisson is a one-parameter distribution,
with the very interesting property—crucial to our
analysis—that the variance equals the expected
value, both being equal to the Poisson parameter
A(r,f). That is, knowing the expected value, one also
knows, in a sense, how much random variation is
to be expected around that expected value. In fact,
one knows the entire distribution.

Now, to identify and estimate the effects of
systematic factors on the accident counts, we
specify

Ar,t) = eX0F;

i.e., In[A(r,2)] can be written as a linear regression
determined by a set of independent variables x; and
a set of coefficients B8(j = 1,2, . . . ,J). This choice
of functional form is in a sense a natural one, in that
it makes sure that the expected number of accidents
is always a positive number, although possibly a
very small one. To the extent that the x; variables
are measured on a logarithmic scale, the 8;s are
interpretable as (constant) ‘‘accident elasticities™,
i.e. as the percentage increase in the expected num-
ber of accidents A(r,r), following a 1% increase in
x;. For x; variables measured on an ordinary linear
scale, the elasticity is given by x; - §;, i.e. increasing
in x;. For dummy x; variables, the 8;s approximately
measure the relative increase in A(#,#) as the dummy
variable changes from zero to one.

Now assume, for the sake of the argument, that
we have somehow acquired complete and correct
knowledge of all the factors x; causing systematic
variation, and of all their coefficients 8;. In other
words, the expected number of accidents \(r,7)—i.e.
all there is to know about the accident generating
process—is known. Could we then predict the acci-
dent number with certainty? The answer is no: there
would still be an unavoidable amount of purely ran-
dom variation left, the variance of which would be
given—precisely—by A(r,f). The residual variation
should never be smaller than this, or else one must
conclude that part of the purely random variation has
been misinterpreted as systematic and erroneously
attributed to one or more causal factors.

Now, in practice one is seldom in the fortunate
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situation that all risk factors have been correctly
identified and their coefficients impeccably esti-
mated, so that the expected number of accidents is
virtually known. A somewhat more realistic proba-
bility model arises if one assumes that the Poisson
parameter A(r,t) is itself random, and drawn from a
gamma distribution with shape parameter ¢ (say),
in which case the observed number of accidents can
be shown (Gourieroux, Montfort, and Trognon 1984
a, b) to follow a negative binomial distribution with
expected value E[A(r,)] = u(r,?) (say) and variance

oX(r,0) = p(r,) [1 + 6 u(r,0),

where 8 = 1/¢.

In the special case 8 = 0, the gamma distribution
is degenerate, and we are back to the simple Poisson
distribution, in which the variance equals the mean.
We shall refer to 8 as the overdispersion parameter,
and to models in which # > 0 as overdispersed. In
such a model, the amount of unexplained variation
is larger than the normal amount of random distur-
bance in a perfectly specified Poisson model, mean-
ing, in fact, that not all the noise is purely random.
The model does not explain all the systematic varia-
tion, but lumps part of it together with the random
disturbance term.

The overdispersion parameter can be used to
test whether or not our independent variables ex-
plain all the explicable (systematic) variation, i.e. if
there is residual variation left in the model over and
above the amount that should be there in a perfectly
specified and estimated Poisson model. However,
even if the overdispersion is found to be zero, it
does not follow that the analyst has found all the true
causal factors and correctly calculated their effects.
Our formulation is no guarantee against spurious
correlation being interpreted as causal, only against
too much correlation being interpreted that way. In
principle, two quite distinct sets of alleged causal
factors could provide equally good and apparently
complete explanations, as judged by the overdisper-
sion criterion. As in other econometric work, the
choice of independent variables must be guided by
theory and professional judgement, rather than by
curve-fitting.

3. AFOUR-COUNTRY DATA SET

- To estimate these generalized Poisson regres-
sion models, combined cross-section/time-series
data bases have been compiled for each of the four
greater Nordic countries. Monthly accident counts
are given for each county (province), of which there
are 14 in Denmark, 11 in Finland, 19 in Norway,

and 24 in Sweden. The time periods of observation
used for this study extend from 1977 through 1987
in the case of Denmark, from 1975 through 1987 for
Finland, from 1973 through 1986 for Norway, and
from 1976 through 1987 for Sweden, yielding, re-
spectively, 1848, 1716, 3192, and 3456 units of
observation.

Apart from accident statistics, the data bases
include data on gasoline sales (a proxy for exposure
or traffic volume), weather conditions, the duration
of daylight, changes in legislation and reporting rou-
tines (dummies), a trend variable, dummy variables
for the different counties and months, as well as a
number of data items that have not been utilized
in the present analysis. Due to dissimilarities with
respect to the availability and quality of statistical
sources in the four countries, it has not been possible
to adopt exactly the same variable definitions and
classifications in all countries, nor has it been possi-
ble to lump all data into one four-country data base.
Thus, we have not been able to analyze the variation
between countries; only the temporal and spatial
variation within each country has been subject to
study.

In Denmark, data on monthly fuel sales are not
available for each county. Instead, traffic counts
pertaining to certain cross-sections of the road sys-
tem are used as measures of temporal variation in
exposure, while the spatial variation (between coun-
ties) in exposure has been estimated on the basis of
regional road use statistics for the year 1980.

Meteorological data are available with a differ-
ing degree of detail—in some countries only monthly
averages (on temperature and precipitation) exist,
while in others we have been able to record, e.g.
the number of (half-)days (i.e. 12- or 24-hour periods)
during which the temperature drops below the point
of freezing, and/or the number of days with precipi-_
tation in the form of rain or snow. These data are”-
based on the records collected by the many meteoro-
logical stations in operation, of which there are usu-
ally several in each county. A selection of stations
has therefore had to be made, based on the complete-
ness of available records and the proximity to the
county’s ‘‘center of gravity’’, as measured in terms
of traffic volumes. Most counties are, however,
small enough that the weather records would be only
marginally different between different stations. In
some cases, however, the average of several meteo-
rological stations within the county is used, to ac-
count for weather variations within geographically
extended and heterogeneous regions.

The amount of daylight per 24-hour period has
been compiled on the basis of almanac data on the
exact times of sunrise and sunset, as measured at a
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sample point in each county. In the Nordic coun-
tries, this variable exhibits an unusual amount of
variation, cross-sectionally as well as over the year.
In the northernmost regions, e.g. the measured
amount of daylight is zero in December-January
and 24 hours a day in June-July.

For Finland, daylight is measured from mid-
night till midnight. For Denmark, Norway and Swe-
den, however, the daylight data pertain to the period
between 7 A.M. and 11 p.M. In these three countries,
therefore, the daylight measures are affected by the
introduction, from 1980 onwards, of daylight savings
time during April through September and by the fact
that sunrise and sunset occur at an earlier clock
time in the easternmost counties. The latter effect
is particularly pronounced in Norway, where the
solar time difference between the easternmost and
westernmost points is almost two hours; yet the
entire coun’ry is in one time zone.

Models have been estimated with three types of
dependent variables: the number of injury accidents
(I, the number of fatal accidents (F), and the num-
ber of road users killed (K). An accident is called
fatal if one or more persons are killed. Injury acci-
dents are accidents in which one or more persons
are killed or injured, i.e. the I category includes even
the fatal accidents.

For Denmark data are lacking on the number
of road users killed, while for Finland data were not
available or fatal accidents.

4. GENERALIZED POISSON
REGRESSION MODELS FOR
FOUR COUNTRIES

4.1. Overview of models estimated

A large number of statistical models have been
estimated, differing with respect to the set of depen-
dent and independent variables used. An overview
of models presented in this paper is given in Table
1, in which we also exhibit the notation used to refer
to the various models.

The simplest models (I1, F1, K1) are the ones
containing only a constant term and a measure of
exposure (usually gasoline sales). In a second set of
models (12, F2, K2} we include dummy variables
capturing irnportant changes in reporting routines
affecting the accident statistics, and in traffic legisla-
tion. In a third step, variables describing the weather
conditions and the amount of daylight prevailing in
a particular county and month are added. Fourth,
we add a linear trend factor, capturing gradual
changes in the risk level, uniformly for all counties
in a given country. Fifth, we add a set of regional
dummy variables, one for each county except one.

In the most complete set of models (I6, F6, K6), a
similar set of seasonal dummies, one for each month
except December, is added.

These two sets of dummy variables are meant
to represent whatever regional and seasonal differ-
ences in the accident risk level are not captured by
the other variables included. They are, however,
not uncorrelated with these variables, and tend to
absorb a large part of the variation attributable to
weather, daylight, and—in particular—exposure,
possibly distorting those coefficients heavily. For
purposes of causal inference we therefore prefer
models 14, F4, and K4, as discussed in section 4.2
below.

Apart from the linear trend term and certain
changes in the Danish speed limit legislation, no
attempt has been made, in this study, to estimate
the effect of risk or safety factors other than weather
and daylight. This is so, although certain variables
of interest are, in fact, included in the data base and
could have been put into the models. We believe,
however, that in order to estimate reliably the partial
effects of such factors, a fairly complete set of fac-
tors would have to be included (in principle, all the
factors influencing risk), or else the coefficients of
the variables included would be subject to major
omitted-variable bias, since the social, demo-
graphic, economic, and policy variables of interest
would be highly correlated in a data set like ours.
The weather and daylight variables, on the other
hand, are necessarily exogenous to the economic,
social, and accident-generating process, and hence
should not give rise to any important bias of this
kind. If any correlation exists between these vari-
ables and any set of omitted ‘‘explanatory’’ factors,
it must be because the omitted variables are influ-
enced by weather and daylight—or at least by their
normal seasonal and geographic pattern of variation
(the climate)—rather than vice versa. This amounts
to saying that, at worst, the weather and daylight
coefficients incorporate, not only the immediate ef-
fect on casualty risk of e.g. rainfall and snowfall,
but also—to some extent—the effects of certain eco-
nomic and social variables having, on account of
climatic factors, a clear seasonal or geographic pat-
tern of variation.

The models were estimated by means of the
LIMDEP 5.1 computer software (Greene 1990), us-
ing the maximum likelihood estimation method.

4.2. Estimated systematic effects

In Tables 2 through 4 we present the coefficients
of these models, explaining injury accidents, fatal
accidents, and road users killed, respectively, as a
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Table 1. Overview of models estimated

Independent variables Model notation (* means variable(s) included)
Months (dummies) *
Counties (dummies) *
Linear trend * *
Weather and daylight * * *
Reporting and legislation () (*) * * (W)
Exposure * * * * * *
Constant * * * * * * *
Country I - models explaining injury accidents
Denmark DK-10 |DK-i1 |DK-I2 |DK-I3 |DK-14 |DK-I5 |DK-I6
Finland SF-10 SE-11 SF-12 SF-13 SF-I4 SF-I5 SF-16
Norway N-I0 N-11 N-12 N-I3 N-14 N-I5 N-16
Sweden S-10 S-11 S-12 S-13 S-14 S-I5 S-16
F - models explaining fatal accidents

Denmark DK-FO | DK-F1 | DK-F2 | DK-F3 |DK-F4 | DK-F5 | DK-F6
Finland
Norway N-FO N-F1 N-F3 N-F4 N-F5 N-Fé6
Sweden S-FO S-F1 ‘S-F3 S-F4 S-F§ S-F6

K - models explaining road users killed
Denmark
Finland SF-KO | SF-K1 SF-K3 | SF-K4 |SF-KS |SF-Ké
Norway N-KO N-K1 N-K3 N-K4 N-K$§ N-K6
Sweden S-KO S-K1 S-K3 S-K4 S-KS S-K6

function of exposure, reporting/legislation, weather,
daylight, and trend.

Exposure. For injury accidents, exposure, as
proxied by the gasoline sales, comes out with a coef-
ficient close to one, meaning near proportionality
between exposure and the expected number of in-
jury accidents. For Denmark, two separate coeffi-
cients are estimated, one capturing time-series and
the other cross-sectional variation. Here, only the
cross-section effect is seen to be close to one. For
the other three countries, the exposure variable cap-
tures cross-section as well as time-series variation.

For fatal accidents and death victims (Tables 3
and 4), the exposure coefficients are significantly
smaller than one, suggesting a less than proportional
relationship between traffic volume and casualties.
In Sweden, for examples the expected number of
fatal accidents increases by an estimated 0.64% for
each percent increase in the gasoline sales. In other
words, the risk per exposure unit decreases by about
0.36% when the traffic volume grows by 1%.

There are several ways to interpret this result.
One interesting hypothesis is that the average sever-
ity of accidents decreases with the traffic volume,
since the average speed level is forced down in
denser traffic. This interpretation seems consistent
with the findings of Fridstrem and Ingebrigtsen

(1991), who find that increases in traffic density (as
measured in terms of fuel sales per unit road length),
for given exposure, tends to reduce the number of
casualties, especially the fatal ones. Also, such an
hypotheses might help understand why the time-
series effect (as estimated on the Danish data set)
is considerably smaller than the cross-section effect.
Over time, the length of the road network in a given
county is almost constant, meaning that the effect
of increased exposure is dampened by the (opposite)
effect of increased density. In the cross-section of
counties, the association between traffic volume and
traffic density is much less pronounced.

Another possible interpretation of the less than
proportional relationship between exposure and cas-
ualties, is by reference to learning (Adams 1987).
As society becomes increasingly more used to mo-
torized transport, knowledge on how to avoid acci-
dents, reduce their severity, or repair the damage
caused accumulates among individuals and institu-
tions. Driving proficiency tends to improve, the road
system is amended, vehicle crashworthiness is en-
hanced, and medical advances and improvements
in the public health system account for increased
survival rates among accident victims with very se-
vere injuries.

The average fuel efficiency of the car park has
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Table 2. Models I4: injury accidents (coefficient estimates, with standard errors in parentheses)

j Variable Denmark Finland Norway Sweden

0 Constant —1.301(.149) 1.665(.052) —-3.991(.101) 1.956(.045)
Exposure

1 In(temporal traffic index by county) 0.394(.043)

2 In(traffic level in county as of 1980) 0.979(.012)

3 In(gasoline sales*) 1.051(.010) 0.946(.010) 0.990(.008)
Reporting and legislation (dummies)

4 1.3.1979: new speed limits —0.190(.021)

5 1.10.1985: new speed limits 0.003(.021)

6 1.1,1978: new reporting routines —0.234(.020)

7 1.1.1977: new accident report forms 0.033(.017)

8 1.10.1978: new reporting routines —0.137(.019)

9 1.1.1985: new accident report forms —0.039(.016)
Weather and daylight

10 monthly precipitation (mm/1000) 0.881(.178)

11 monthly days with precipitation/100 0.239(.120)

12 monthly days with rainfall/100 1.156(.146) 0.274(.112)

13 monthly days with snowfall/100 —1.219(.150) —0.479(.152) —0.048(.157)

14 sudden snowfall (dummy) 0.050(.016) 0.015(.024) 0.042(.034)

15 monthly days with frost/100 -1.753(.124) —1.554(.081)

16 monthly half-days with frost/200 —0.933(.137)

17 snow depth (cm/100) —0.472(.039) 0.035(.033) -0.410(.045)

18 minutes of daylight per day/1000 ~0.362(.035)

19 minutes of daylight 7 am~11 pm/1000 —0.105(.053) —0.710(.038) —0.655(.038)
Trend

20 months since first observation/100 —-0.174(.030) —0.029(.019) —0.160(.022) —0.091(.018)
Summary sample statistics )

Overdispersion parameter 0.036(.002) 0.032(.002) 0.044(.002) 0.052(.002)

Log-likelihood —7376.2 —6497 .4 —-11558 —13538

Sample size 1848 1716 3192 3456

Degrees of freedom 1836 1706 3180 3447

Mean of dependent variable 64.0 56.8 37.5 55.1

Maximum of dependent variable 193 234 163 314

Minimum of dependent variable 2 7 0 0

Maximum of predicted values 164.6 222.0 125.7 349.5

Minimum of predicted values 4,059 10.5 6.120 4,677

*Measured in thousands of liters for Norway, and millions of liters for Finland and Sweden.

improved over time, although in the Nordic coun-
tries at a rather moderate pace. In Norway, for ex-
ample, gasoline consumption per vehicle kilometer
went down by an estimated 13% between 1975 and
1987 (Rideng 1993). Thus the increase in exposure
over time is slightly understated in our data sets.

The learning and traffic density effects would
tend to translate into a less than proportional rela-
tionship be‘ween gasoline sales and casualties, as
estimable in a time-series data set. The fuel effi-
ciency effect, on the other hand, would pull the
exposure coefficient in the opposite direction. Now,
in our data sets the amount of time-series variation
is small compared to the cross-sectional variation.
Moreover, the influence of any factor with a spatially
stable, but temporally monotonic pattern of varia-
tion is likely to be captured, to a rather large degree,
by the linear trend term (see below). The biases due
to learning and fuel efficiency effects are, therefore,
probably not very large.

It might be argued that, in models like these,
the exposure coefficient ought to be constrained to

one. In such a case, the remaining parameters of
the model would be interpretable as estimates of the
pure effects on risk, rather than as a mixture of
effects on risk as well as exposure. This formulation,
however, would be tantamount to assuming strict
proportionally between exposure and accidents,
something that appears unreasonably restrictive in
view of the above arguments and notably in view of
the empirical results derived here.

Accident reporting. Accident reporting rou-
tines may have an artificial, though significant, effect
on casualty counts. In each of the four countries,
all road accidents involving injury are, in principle,
subject to mandatory police reporting. Road acci-
dent statistics are compiled on the basis of these
police reports. It is well known, however, that the
reporting is far from complete, except probably for
fatal accidents/death victims (Finnish Roads and
Waterway Administration 1982; Borger 1991; Ned-
land and Lie 1986; Thulin 1987; Gothenburg City
Planning Office 1986; Larsen 1989). Certain catego-
ries of accidents are reported less frequently than
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Table 3. Models F4: fatal accidents (coefficient estimates, with standard errors in parentheses)

j Variable Denmark Finland Norway Sweden

0 Constant —2.640(.433) —3.532(.300) 0.123(.101)
Exposure

I In{temporal traffic index by county) 0.432(.116)

2 In(traffic level) (1980) 0.802(.037)

3 In(gasoline sales*) 0.575(.030) 0.640(.018)
Reporting and legislation (dummies)

4 1.3.1979: new speed limits -0.234(.052)

5 1.10.1985: new speed limits —0.050(.054)
Weather and daylight

10 monthly precipitation (mm/1000) 0.984(.431)

11 monthly days with precipitation/100 0.317(.276)

12 monthly days with rainfall/100 —0.384(.328)

13 monthly days with snowfall/100 —1.467(.394) —0.989(.467)

14 sudden snowfall (dummy) 0.049(.038) 0.062(.086)

15 monthly days with frost/100 —1.029(.363) ~1.313(.184)

16 monthly half-days with frost/200 —0.762(.365)

17 snow depth (cm/100) —0.296(.109) —0.519(.120)

19 minutes of daylight 7 am-11 pm/1000 —0.530(.129) —0.742(.116) —0.712(.085)
Trend

20 months since first observation/100 0.066(.076) —0.328(.030) —0.303(.025)
Summary sample statistics

Overdispersion parameter 0.066(.011) 0.030(.014) 0.030(.009)

Log-likelihood —3804.1 ~5115.1 -6358.1

Sample size 1848 3192 3456

Degrees of freedom 1836 3182 3448

Mean of dependent variable 3.685 1.740 2.727

Maximum of dependent variable 17 11 16

Minimum of dependent variable 0 0 0

Maximum of predicted values 8.435 4.196 9.857

Minimum of predicted values 0.399 0.467 0.463

*Measured in thousands of liters for Norway, and millions of liters for Sweden.
Table 4. Models K4: road users killed (cocfficient estimates, with standard errors in parentheses)

j Variable Denmark Finland Norway Sweden

0 Constant 0.043(.123) —3.324(.300) 0.146(.109)
Exposure

3 In(gasoline sales*) 0.778(.023) 0.557¢.031) 0.641(.021)
Weather and daylight

11 monthly days with precipitation/100 0.553(.291)

12 monthly days with rainfall/100 1.014(.334) —0.458(.336)

13 monthly days with snowfall/100 0.667(.353) —0.860(.483)

14 sudden snowfall (dummy) —0.032(.048) 0.044(.100)

15 monthly days with frost/100 —1.080(.374) —1.188(.196)

17 snow depth (cm/100) —0.864(.090) —0.251(.112) —0.447(.121)

18 minutes of daylight per day/1000 —0.393(.076)

19 minutes of daylight 7am~11pm/1000 —0.689(.120) —-0.634(.092)
Trend

20 months since first observation/100 —-0.371(.028) —0.299(.032) —0.304¢.027)
Summary sample statistics

Overdispersion parameter 0.060(.009) 0.157(.018) 0.123(.010)

Log-likelihood —3797.4 —-5507.2 —6897.7

Sample size 1716 3192 3456

Degrees of freedom 1707 3182 3448

Mean of dependent variable 4.776 1.915 3.058

Maximum of dependent variable 28 12 18

Minimum of dependent variable 0 0 0

Maximum of predicted values 17.420 4,422 10.780

Minimum of predicted values 0.987 0.559 0.548

*Measured in thousands of liters for Norway, and millions of liters for Finland and Sweden.



Randomness and the variation in road accident counts 9

others. It cannot be excluded, therefore, that
changes in the incidence of reporting correlate with
changes in cne or more of our independent variables,
thus biasing the coefficients of the latter. Accidents
involving bicyclists, for example, are known to be
subject to major underreporting, thus biasing the
coefficients of any variable correlated with bicyclist
exposure (such as weather and daylight).

Certain known, important changes in the report-
ing routines have been incorporated in the models
in the form of dummy variables. In Finland, for
example, the introduction of new routines in January
1978 seems to have reduced the accident counts by
an estimated 21% (1 — e~34). In Norway, accidents
with only ‘‘minor” injury have not been subject to
mandatory reporting since October 1978; this ap-
pears to have reduced the injury accident count by
some 13%.

Legislation. During the period of observation
considered, important legislative changes have
taken place only in Denmark, in the form of lowered
speed limits. As of March [st, 1979, the speed limits
on rural roads and freeways were lowered from 90
to 80 km/h and from 110 to 100 km/h, respectively.
From October 1st, 1985, the urban speed limit in
Denmark was lowered from 60 to 50 km/h. The first
speed limit reduction appears to have had a signifi-
cant effect on road casualties, reducing the rate of
fatal accidents by an estimated at 21%, while the
effect of the second one is statistically insignificant
according to our analysis.

Weather. Weather conditions have a significant
impact on accident counts, although in some cases
the direction of impact may seem counterintuitive.
True, rainfall is liable to increase the accident toll.
Snowfall, however, seems to have the opposite ef-
fect. In Denmark, for example, the expected
monthly number of injury accidents decreases by an
estimated 1.2% for each additional day of snowfall
during the month. An even larger effect is estimated
for fatal accidents. Even the incidence of frost comes
out with a significantly negative coefficient. Here,
however, the effect on fatal accidents/death victims
appears to be smaller than on injury accidents in
general. (For Sweden data are lacking on the fre-
quency of snowfall, and for Finland on the frequency
of frost.)

Several interpretations are possible. Most car
drivers in the Nordic countries are well used to trav-
eling under typical winter conditions, and may, un-
der the risk compensation hypothesis, be thought to
adjust their driving habits so as to more or less offset
the increased hazard due to slippery road surfaces.
Indeed, it cannot be ruled out that this behavioral
adjustment is more than large enough to keep the

risk level constant, whereby a net decrease in the
accident count would be observable.

Other, more conventional, lines of explanation
include the possible effects of reduced exposure dur-
ing winter. This effect is not completely controlled
for through our gasoline sales variable, (i) because
the fuel consumption per vehicle kilometer increases
when the temperature drops, the road is covered by
snow or ice, and/or winter tires are used; and (i)
because the exposure due to pedestrians, bicyclists,
motorcyclists, or diesel-driven vehicles is not re-
flected in the gasoline sales statistics.

The plausibility of this explanation is, however,
weakened by the fact that the same kind of effects
is found even for Denmark, in which exposure is
measured directly, by means of traffic counts, rather
than indirectly, through the fuel sales statistics.

A third possible interpretation could be that vis-
ibility at night is increased when the road(side) is
covered by snow. This helps offset the unfavorable
safety effect of a slippery surface.

Fourth, reporting bias could, in principle, be the
source of almost any statistical correlation found.
Note, however, that the bias due to underreporting
of bicycle accidents would especially tend to deflate
the casualty counts during summer. It cannot, there-
fore, explain the apparent casualty-reducing effect
of wintery weather. Even the effects of daylight and
exposure are probably underestimated on account
of this.

Fifth, it is conceivable that less proficient driv-
ers tend to refrain from driving during difficult condi-
tions, so that the driving population has a higher
average level of proficiency during winter.

Sixth, snow drifts along the roadside may have
the effect of dampening the impact of single vehicle
crashes (Brorsson, Ifver, and Rydgren 1988), or per-
haps prevent the vehicle from leaving the road, so
that fewer accidents end up causing injury. Since
only injury accidents are covered by our accident
statistics, this might have the effect of reducing the
accident count. To capture this effect, we have en-
tered snow depth as a separate independent variable
for those countries in which such data have been
available. The snow depth is seen to have a signifi-
cantly negative (i.e. favorable) effect on injury acci-
dents in Finland and Sweden, but an insignificant
effect in Norway. The effect on fatal accidents or
death victims is, however, statistically significant in
all three countries. (For Denmark the relevant data
are lacking.)

The first snowfall occurring during the winter
season may, however, seem to catch the drivers by
sufficient surprise to cause an increased accident
risk, as witnessed by the generally positive (although
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hardly significant) coefficients of the ‘‘sudden snow-
fall”” variable. We measure this by means of a
dummy variable that is set equal to one whenever
a snowfall occurs during the current month, but not
during the preceding one. Previous studies for Nor-
way have shown more significant effects at this point
(Fridstrgm and Ingebrigtsen 1991).

Daylight. The amount of daylight has a quite
unambiguous and favorable effect on the expected
number of accidents. In the Nordic countries, this
factor exhibits an unusual amount of variability,
between counties as well as over the year. An extra
hour of daylight between 7 A.M. and 11 P.M. corre-
sponds to an estimated 4% decrease in the expected
number of injury accidents in Norway (I -
6_0‘7]0'60“000 — 004)

Trend. The linear trend factor comes out with
a significantly negative coefficient in eight out of
ten cases, the remaining two being statistically
insignificant. For injury accidents, the trend factor
is estimated at —0.17% per month in Denmark,
—0.03% in Finland, —0.16% in Norway, and
-0.09% in Sweden, translating into annual risk
reduction rates of —2.1%, —0.35%, —1.9%, and
—1.1%, respectively. In terms of death victims, the
trend effects are larger, and estimated at —4.4%,
—3.5%, and —3.6% annually for Finland, Norway,
and Sweden, respectively. We interpret the trend
variable as a proxy for all those factors that com-
bine to reduce gradually the risk of road casualties
over time, be it improvements in the road infra-
structure, in the inner safety of cars, in the profi-
ciency and behavior of drivers, or in any other
area related to the safety of road users. The gradual
improvement in fuel efficiency is also likely to
have influenced the trend term, although in the
opposite direction.

Constant. In these models, the constant term
does not have any interpretation of its own, as it
merely reflects the size of the unit of observation
(average number of events per county per month)
and the unit of measurement used for the indepen-
dent variables, in particular the fuel sales variable.*
To the extent that dummy explanatory variables are
included in the model, the constant term will also
be affected by the choice of reference category for
the dummy variables (i.e., by which category re-
ceives the code zero on all dummies).

Overdispersion. The overdispersion parameter

*Fuel sales are measured in thousands of liters for Norway,
and millions of liters for Finland and Sweden. This means, for
example, that the Norwegian constant term is 8y X In(1000) =
B; X 6.908 smaller than it would have been, had we used the
same scale in the Norwegian data set as in the Finnish and Swed-
ish ones. (B; is the gasoline sales coefficient.)

is significantly larger than zero in all the models 14/
F4/K4, meaning that the independent variables fail
to explain all the systematic variation in casualty
counts. The overdispersion parameter is, however,
generally not very large (except in models K4),
meaning that the amount of unexplained systematic
variation is relatively small. We revert to this issue
in section 5 below.

Regional and seasonal dummies. To account
for all those factors that vary across regions and/
or according to the season, other than exposure,
weather, and daylight, one might consider including
into the model a full set of dummy variables for
counties and months, i.e. one for each county, ex-
cept one, and one for each month, except one. When
estimated, these models, corresponding to codes 16/
F6/K6 in Table 1, are seen to yield coefficient esti-
mates for exposure, weather, and daylight that are
generally much smaller (and less significant) than in
models 14/F4/K4, suggesting that the causal effects
of these variables are, to a large extent, channelled
through the regional and seasonal dummies. To
check this, another set of models were estimated in
which the exposure coefficient was constrained to
one (meaning that the models explain the casualty
risk per unit of exposure rather than the crude num-
ber of casualties). In these models, the regional and
seasonal dummies come out substantially smaller
than in the otherwise identical models with uncon-
strained exposure coefficients. In other words, when
we constrain the models so as to impose proportion-
ality between casualities and exposure, a large part
of the “‘seasonal”’ and ‘‘regional’’ variation captured
by the dummies disappears.

In general, models 16/F6/K6 exhibit remarkably
small overdispersion, some of them no (statistically
significant) overdispersion at all, meaning that the
models ‘‘explain’’ as much systematic variation. as
there is to explain.

A note on autocorrelation. Our maximum like-
lihood method of estimation does not take account
of autocorrelation, a potentially serious source of
inefficiency in a combined cross-section/time-series
data set like ours. While the coefficient estimates
themselves remain statistically consistent, their esti-
mated standard errors are probably on the low side,
yielding somewhat exaggerated ¢ statistics. Autore-
gressive count data models have been formulated
by Brinnis and Johansson (1992), who, notably, try
out their methods on a subset of our data set (the
Vasterbotten county of Sweden). While these tests
do show statistically significant autocorrelation, the
error of estimation occurring in models not taking
account of autocorrelation appears to be rather
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small, especially for the negative binomial model
corresponding most closely to our formulation.

5. THE ““EXPLANATORY POWER”’ OF
DIFFERENT FACTORS

The Poisson regression model, when appro-
priate, offers some rather interesting opportunities
for interpretation, compared to models based on
other distributional assumptions. In a perfectly spec-
ified and estimated Poisson regression model, i.e.
one in which we have actually found the true value
of the Poisson parameter determining the distribu-
tion of the dependent variable (e.g., the accident
intensity) at each sample point, we also know how
much deviation from those true, expected values is
to be expected due to pure randomness. Having
“‘explained’’ all the systematic variation, we have,
in other words, a way to predict even the random
one. The variance of a Poisson variable is equal to its
mean. Unlike the situation in most other regression
models, it is—in principle——possible to compute an
optimal fit, determined by the amount of (purely
random) variation that would be present in the per-
fectly specified model. Any model providing a higher
“‘explanatory power’’ than this would have to be
discarded as ‘‘underdispersed” (‘‘overfitted”),
meaning that part of the purely random variation
has in fact, through our estimation procedure, been
treated and interpreted as systematic.

To apply this principle, one has to define some
measure of ‘‘explanatory power’ or ‘‘goodness-of-
fit”’. In this paper we define five—rather differ-
ent—such measures, one based on the log-likelihood
ratio, a second based on the overdispersion parame-
ter (the ‘‘Elvik index’’), a third based on the tradi-
tional multiple correlation coefficient (R?), a fourth
(R?) based on the weighted (variance stabilizing)
residuals, and a fifth (R};) based on the Freeman-
Tukey transformation residuals (sec the appendix
for a deteiled derivation and description). Any
choice of goodness-of-fit measure is to some extent
arbitrary. By relying on more than one measure we
attempt, however, to minimize the risk of drawing
conclusions on account of methodological choices
rather than subject matter relationships. The results
of these calculations are summarized in Figs. 1
through 3.

The part attributable to randomness has been
calculated as the amount of sample variation to be
expected on account of normal Poisson disturbance
only, giver that the true Poisson parameters are as
estimated under models 14, F4, or K4. This part is
very robust with respect to changes in the model
specification, since only the sample mean of pre-

dicted values is involved in the calculation. The part
due to exposure is defined as the fit obtained in
models 11/F1/K1, while the part attributable to re-
porting and legislation is calculated as the additional
fit obtained when moving from I1/F1/K1 to 12/F2/
K2 (cf. Table 1), etc. In other words, variables are
added to the models in a stepwise fashion, in an
order given by the upper part of Table 1 (or by Figs.
1-3), as read from the bottom category up. This
must be born in mind when the diagrams are inter-
preted, as the (added) ‘‘explanatory power”’ due to
a given varible is strongly dependent on what other
independent variables are already present in the
model.

The five different ways of measuring ‘‘explana-
tory power’’ are, by and large, seen to yield reassur-
ingly similar results.

5.1. Models for injury accidents

For injury accidents (Fig. 1), less than 10% of
the sample variation can be ascribed to random fac-
tors alone (around 3% for Sweden and 9% for Nor-
way). Exposure, on the other hand, is seen to “‘ex-
plain’’ 65% to 85% of the total variation, and no less
than 72% of the ‘‘explicable’’, systematic variation
that is left after the purely random part has been
subtracted. Reporting and legislation, as measured
in our models, account for about 7% in Denmark,
less in the other three countries. Weather and day-
light are most important in Norway (about 6%).
Taken together, these four general factors (random-
ness, exposure, reporting/legislation, and weather/
daylight) are able to ‘‘explain’’ (by the log-likelihood
measure) 87% of the variation in Denmark, 94% in
Finland, 85% in Norway, and 90% in Sweden. Note
that, apart from the speed limit dummies included
in the Danish model, there is not a single road safety
measure among the list of “‘explanatory’’ factors
so far included in the models (unless one chooses
to regard exposure as a variable open to public
intervention).

The trend term, which—in principle—incorpo-
rates long-term, linear safety improvements, has a
barely noticeable explanatory power. Regional fac-
tors as captured by a set of dummy variables (one
less than the number of counties) “‘explain’” an addi-
tional 8% cent of the variation in Denmark, but less
than 1% in Finland. The 11 seasonal dummies add a
final 1% to 2% to the goodness-of-fit in each country.
Most of the regional and seasonal variation has, of
course, already been captured by the exposure,
weather, and daylight variables.

5.2, Models for fatal accidents
Turning to fatal accidents (Fig. 2), one finds
that the picture is interestingly different. As such
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Fig. 1. Variation in injury accidents, decomposed by source, according to five different goodness-of-fit measures.

accidents are a lot fewer, the (relative) scope for
random variation is dramatically larger, amounting
to no less than 80% in the Norwegian data set and
around 60% in the Danish and Swedish data sets.
Exposure accounts for about 62% of the remaining
(systematic) variation in Denmark, 52% in Norway,
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and 73% in Sweden. Taken together, randomness,
exposure, weather, and daylight explain 87% of the
variation in Denmark, a full 94% in Norway, and
93% in Sweden.

For fatal accidents, the trend factor has a non-
negligible role to play, at least in Norway and Swe-
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Fig. 2. Variation in fatal accidents, decomposed by source, according to five different goodness-of-fit measures.
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den, where its contribution amounts to between 2%
and 3%. By assumption, reporting routines do not
influence the statistics on fatal accidents. The Dan-
ish speed limit measures account, however, for
about 1% cf the variation in that country.

When the regional and seasonal dummies are
added to the model, the amount of ‘‘explained’’ vari-
ation becomes remarkably close to 100%. The over-
dispersion parameter is, in fact, not statistically sig-
nificant in any of the models DK-F6, N-F6, or S-
F6, meaning that the pure Poisson model is fully
satisfactory, and there is virtually nothing left to
explain beyond the normal random noise. We
choose, however, not to place confidence in these
models, as, e.g., the exposure coefficients tend to
drop to implausibly low levels, and a number of
other coefficients become statistically insignificant.
To provide an opportunity for valid causal inference,
one would have to go behind this observable pattern
of seasonal and regional variation, explaining it by
means of measurements on those substantive factors
that act to make one county or one season different
from another in terms of accident risk. A fit ap-
proaching 100% is a necessary, but not a sufficient
condition for a perfectly specified causal model.

Comparing the models for injury accidents to
those for fatal accidents, the explanatory power, as
measured by traditional goodness-of-fit statistics, is
much higher for injury accidents. This is, however,
due exclusively to the fact that the natural amount
of random variation is (relatively speaking) much
larger for rarer events. Indeed, when due account
is taken of the randomness, the models for fatal
accidents are seen to explain a larger share of the
variation than the models covering all injury acci-
dents. One might only speculate why this is so. It
cannot be ruled out that shortfalls in the accident
reporting routines, not accounted for by our dummy
variables, play an important role in this respect and
that, if reporting had been complete also for injury
accidents, one would be able to explain as large a
share of their systematic variation as is the case for
fatal accidents.

5.3. Models for road users killed

As is evident from Tables 3 and 4 above, the
models explaining, respectively, fatal accidents and
road users Kkilled, yield—not surprisingly—very
similar parameter estimates. There is one exception:
The overdispersion parameter is very much larger
in the models explaining death victims. It is not
hard to see why. While accidents, for all practical
purposes, can be treated as probabilistically inde-
pendent events, victims are not. An accident may
very well involve more than one victim, meaning

that the Poisson specification can be regarded only
as an ad hoc approximation to the true, victim-gener-
ating process. A positive overdispersion parameter
must always be expected, no matter how complete
a set of independent variables has been included.

The additional overdispersion present in the
victims model translates into a reduced goodness-
of-fit, as expressed by any one of the five measures
defined. In Fig. 3, the randomness component ap-
pears to be considerably smaller than in the case of
fatal accidents (Fig. 2), also yielding a poorer overall
‘‘explanatory power” for all factors taken together.
This is, however, clearly a statistical artifact. The
scope for random variation is, obviously, at least as
large with respect to death victims as it is in the case
of fatal accidents. In reality, therefore, we are just
about as close to explaining all the explicable (sys-
tematic) variation in the death counts as we are in
the case of accident counts, the difference being that
there is no good yardstick against which to measure
explained variation in probabilistically dependent
events, such as road deaths.

6. SUMMARY AND CONCLUSIONS

The formulation of (generalized) Poisson re-
gression models for accident counts allows for an
interesting opportunity, seldom met with in econo-
metric modelling, of decomposing the total variation
in the dependent variable into one part due to normal
random (inexplicable) variation, and another part
due to systematic, causal factors. It is, in other
words, possible to define a yardstick, telling the ana-
lyst just how much variation he or she should ideally
be able to, or attempt 1o, explain.

This approach may seem fruitful whenever one
wants to explain causally determined, probabilistic-
ally independent chance events. It is less well suited
for situations in which the events are not truly (ob-
jectively) random, or when they are probabilistically
dependent. In safety analysis, for example, it seems
preferable to work with accidents rather than victims
as the dependent variable. Analyses performed on
data for Denmark, Finland, Norway, and Sweden
suggest that even quite simple Poisson regression
models can come very close to explaining almost
all the systematic variation in a cross-section/time-
series accident data set. When the events analyzed
are not independent, however, it is strongly advis-
able to use a negative binomial rather than a pure
Poisson specification, as a certain amount of over-
dispersion must always be expected in such cases.

The scope for normal random variation is
strongly dependent on the size of the unit of observa-
tion, as measured by the expected number of events.
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Fig. 3. Variation in road users killed, decomposed by source, according to five different goodness-of-fit measures.

For data sets in which the expected number of events
is small—say, always less than 10—a major part of
the variation will typically be due to sheer chance.
It is useful for the analyst to be aware of the fact
that, in such cases, no model should attempt or be
able to explain more than the smaller part of the
observed variation. When the effects of policy inter-
ventions are to be evaluated, it is essential to be
able to control for the sometimes very important
random component in casualty counts.

The fact that a major part of the observable
variation in an empirical data set is attributable to
sheer randomness, does not, however, imply that
causal factors are in any sense unimportant. The
systematic, causal factors determine the expected
number of casualties around which the observed
variation in casualty counts is centered. By bringing
sufficiently large changes to bear on these systematic
factors, one would, in principle, be able to alter
the long-term casualty count by any positive ratio
conceivable.

Inference concerning the partial causal effects
of the respective systematic factors at work is sub-
ject to a number of pitfalls. Coefficient estimates
are derived on the basis of the multiple correlation
structure present in the data set and on the model
specification chosen. The causal interpretation of
these coefficients rests crucially on whether the cho-
sen statistical model corresponds to some true, casu-
alty-generating causal process—an assumption that
is ultimately untestable and axiomatic in nature.

While in reality the expected number of road cas-
ualtiesis obviously dependent ona very large number
of variables, only a small set of factors has been con-
sidered inouranalyses. Causalinferences concerning
these few factors are biased to the extent that the
omitted explanatory variables are correlated with the
independent variables included in the model.

The various road safety measures and risk fac-
tors that have been in effect over our observation pe-
riod—omitted to the extent that they are not captured
by the uniformly linear trend term —are, indeed,
likely to be correlated with the exposure, weather,
and daylight variables. These factors are therefore li-
able to cause certain biases in the exposure, weather, .
and daylight coefficients. It might be argued, how-
ever, that the weather and daylight variables are nec-
essarily exogenous to the economic, social, and acci-
dent-generating process, so that if any correlation
exists between these variables and any set of omitted
explanatory factors, it must be because the omitted
variables are influenced by weather and daylight—or
at least by their normal seasonal and geographic pat-
tern of variation (the climate)—rather than vice
versa. This amounts to saying that, at worst, the
weather and daylight coefficients incorporate, not
only the immediate effect on casualty risk of, e.g.
rainfall and snowfall, but also, to some extent, the
effects of certain economic and social variables hav-
ing, on account of climatic factors, a clear seasonal
or geographic pattern of variation.

Perhaps the most prominent source of error in



Randomness and the variation in road accident counts 15

our analyses is accident underreporting, which varies
systematically with the type of accident, the calen-
dar, the geographic location, and hence probably with
almost all the independent variables used in our mod-
els. For fatal accidents and death victims, however,
this source of error is fortunately negligible.

The impact of factors that do not vary over the
data set is not detectable through an analysis like
ours. Thus, risk or safety factors that apply uniformly
to all time periods and all regions within a given coun-
try offer no power of explanation, nor do measures
that had yet to be introduced at the end of the observa-
tion period. In general, since our analyses include
practically no accident countermeasures, the possi-
ble casualty-reducing effects of such measures are
obviously not assessable on the basis of our work. Itis
well known from other sources that certain measures
(e.g. seat belts) may have a significant impact on the
accident toll, or at lcast on that subset of victims or
accidents to which they are targeted (e.g. car occu-
pants). In our analyses, however, such measures are
all subsumed under the trend term, contributing to
its coefficient only to the extent that their effects are
noticeableintermsofaggregate accident counts. Risk
or safety factors having an effect on only a small sub-
set of accidents are not likely to be traceable in macro
data, no matter how strong that effect may be.

With these qualifications, our empirical analyses
suggest tha:, among the various factors behind the
systematic variation in road casualty counts, expo-
sure is by fer the most important, explaining at least
50% of the systematic variation in fatal accidents and
more than 70% in the case of injury accidents. The
relationship between exposure and injury accidents
appears to be almost proportional, while it is less than
proportional in the case of fatal accidents or death
victims.

Weather conditions appear to play a fairly im-
portant role in the accident-generating process, al-
though in the Nordic countries the direction ofimpact
i1s somewhat counterintuitive. Other things being
equal, fewer injury road accidents and deaths seem to
occurundertypical winterconditions than otherwise.
It cannot be ruled out, however, that this finding is
biased by the fact that exposure levels are not per-
fectly controlled for in our models.

A surprisingly large share of the variationinroad
casualty counts is explicable in terms of factors not
ordinarily within the realm of traffic safety policy. In
view of this observation, and of the fact that injury
accidents appear to vary almost proportionately with
the gasoline sales, it may seem unlikely that very sub-
stantial reductions in the aggregate accident toll can
be achieved without a decrease in the one most im-
portant systematic determinant: the traffic volume.
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APPENDIX

A. GOODNESS-OF-FIT MEASURES
FOR GENERALIZED POISSON
REGRESSION MODELS

Traditional measures of goodness-of-fit describe how
much ‘‘variation’’ in the dependent variable is ‘‘ex-
plained’’ by the model estimated, as compared to the total
variation present in the data set. Variation is usually taken
to mean *‘sample variance’’, or ‘‘the sum of squared devia-
tions from the sample mean’’.

~In most situations, however, goodness-of-fit mea-
sures are of limited value to the researcher or policy
maker, since it is not at all clear that the “*best’” model
is the one that provides the best fit, nor is it clear just
how good a fit should be, in‘order for the model to be
judged acceptable. The maximally obtainable fit would
depend on the level of measurement and distribution of
the dependent variable, in particular on the true structure
of the error-generating process, which introduces random
variation into the data set. There is no point in trying to
explain the purely random noise. On the contrary, the aim
of the analysis is to explain all systematic variation, i.e.
all variation except the part due to sheer randomness.
But since we normally do not know how much random
disturbance there should be, there is no yardstick against
which we can measure a given goodness-of-fit in order
to judge whether or not a given model explains all the
systematic variation there is to explain.

In this context, the Poisson regression model, when
appropriate, offers some rather interesting opportunities.

In a perfectly specified and estimated Poisson regression
model, i.e. one in which we have actually found the true
value of the Poisson parameter determining the distribu-
tion of the dependent variable (e.g. the accident intensity)
at each sample point, we also know how much deviation
from those true, expected values is to be expected due
to purely random variation. Having ‘‘explained” all the
systematic variation, we have, in other words, a way to
predict even the random one. The variance of a Poisson
variable is equal to its mean. Unlike the situation in most
other regression models, it is, in principle, possible to
compute an optimal fit, determined by the amount of
(purely random) variation that would be present in the
perfectly specified model. Any model providing a higher
explanatory power than this would have to be discarded
as underdispersed (overfitted), meaning that part of the
purely random variation has in fact, throngh our estima-
tion procedure, been treated and interpreted as
systematic.

There are several ways in which one can measure
goodness-of-fit. We shall start by examining the familiar
coefficient of determination, sometimes referred to as the
(squared) multiple correlation coefficient (RY).

A.l. R*—the squared multiple
correlation coefficient

If we denote by y; the observations on our dependent
variable, by ¥ their sample average, by J; the fitted values
from some model estimation, and by & = y; — ¥; the
residuals, the usual R? measure can be written as

508 Sy -9 -5

= 1
iy - 5’)2 yi— }—’)2 M

RP=1-

where the second term after the first equality sign is inter-
pretable as the residual (unexplained) part of the total
sample variation. The remaining part—R’>—is ‘‘ex-
plained’’ by the model.

Now, if the y; are Poisson-distributed with parame-
ters, A; (say), the expected value of 47 is also (approxi-
mately) \;, meaning that in a perfectly specified and esti-
mated model, the total residual variation would have an
expected value approximately* given by

ECG0%) =~ 3), = A (say). 2
A consistent estimate of A is
A=%3. 3)

Thus, even in a perfectly specified and estimated model
the amount of “‘explained’’ variation would not exceed

21)’}[

i 4
S(yi— ¥ @

P=1-

Here, the second term on the right-hand side is interpret-
able as the random noise part of the total variation, while
the remaining part—P>—Iis the estimated amount of sys-
tematic variation.

Now, since P? is in a sense the upper bound on the
amount of variation that we would want to or be able to

*In smaller samples one should correct for the degrees of
freedom, multiplying by (n — k)/n, where k is the number of
parameters in the model.
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explain, a natural goodness-of-fit measure for the Poisson
model could be

Ei(y.» - )-')2 - E,~ l?;z

- -39 ©

RZ
Ri= =

Note that this measure differs from the ordinary R?
statistic only in that the amount of normal random varia-
tion has been subtracted from the total sample variation
appearing in the denominator, The ‘‘yardstick’” has, in a
sense, been adjusted, so as to leave out the inevitable
random disturbance from the total sample variation. Only
the remaining, systematic variation is of interest for pur-
poses of interpretation.

This adjustment has the interesting consequence that
the R} measure could conceivably exceed 1. Such an in-
stance would, however, have to be interpreted as an indi-
cation of overfitting: more variation has been explained
than there really is to explain. Certain parts of the ex-
plained variation would simply be a misinterpretation of
purely random noise, due to spurious correlation rather
than to real causal relationships.

Fortunately, the denominator of R} is fairly robust
with respect to the different model specifications, at least
as long as the models contain a constant term, since in this
case the sum of the fitted values J; will be only marginally
different from the sum of observed values y;. Exact equal-
ity will, however, apply only in the case of ordinary least
squares (OLS) linear regression.

The usual (and preferred) way to estimate a Poisson
regression model is not by OLS, but by maximum likeli-
hood (ML) or some variant thereof. It might be argued,
therefore, thar R? is not the relevant goodness-of-fit mea-
sure for Poisson models, and that a measure based on the
(log-)likelihood would be more appropriate. By definition,
R? is maximized by OLS, but not by ML.

To the extent that one wants to use the goodness-of-
fit measure as a basis for specification tests, this argument
undoubtedly carries a lot of merit. Our concern, however,
is to obtain an intuively understandable way of decompos-
ing the total variation present in a sample, into one part
explained by our model, and one part not explained. From
the unexplained part we would like to be able to subtract
the purely random variation that should not under any
circumstances be explained, while the explained part
should ideally be further decomposable into parts attribut-
able to the different independent variables included in the
model.

Moreover, whenever one wants to compare different,
non-nested methods of estimation (i.e. methods such that
one is not always a special case of another), there is some
point in not using a goodness-of-fit measure that is inher-
ently maximized by one of the methods considered.
Rather, one needs a measure that can be considered more
or less neutral as between the different methods under
consideration.

Any such measure is, however, necessarily arbitrary.
That is why we present more than one measure. A nat-
ural generalization of the ordinary R? measure is the
weighted R2,

A.2. The weighted R?

A Poisson regression model is typically heteroskedas-
tic, in that the variances A are not equal between different
observations i. Indeed, the theoretically optimal linear

regression method is one which weights each observation
by the reciprocal of its standard deviation, i.e., by
1/Vx;. Since the As are unknown, the best one can do in
practice (within the class of linear models) is to run a two-
stage (or iterative multi-stage) procedure, in which the
optimal weights in stage m are approximated by 1/ Am,
where A denotes the fitted values calculable from stage
m — 1. This is tantamount to maximizing the goodness-
of-fit measure
oyl X
=565 75, ®

Note that X? is, in fact, the familiar Pearson chi-square
statistic, which is minimized through this weighted least
squares procedure.

Also, note that under the Poisson assumption, each
clement 42/9; of the sum X? has an expected value of
approximately one (the weights are approximately vari-
ance stabilizing on y;), so that the Pearson chi-square sta-
tistic would be tending approximately towards #, the sam-
ple size (more accurately towards n — k, the degrees of
freedom, where k is the number of parameters estimated).
The weighted regression analogue of P2 can therefore be
written

=1 —4, 7
P E,(y,- - )7)2/)77' @

and a weighted goodness-of-fit measure for systematic
variation in a Poisson model is given by

R 3.(y;- P15, = 3,089,
2 Tw i i {ad] 1’ 8
Rew P, Z(y;— 379 —n ®

by analogy to eqn 5.

This measure takes account of the fact that Poisson
variates with a larger variance contain less information,
and hence should be given a correspondingly smaller
weight in the calculation. Equal amounts of information,
as measured by the reciprocal of the standard deviation
pertaining to each observation, are in a sense given equal
weights in the assessment of the model's explanatory
power.

This R}, goodness-of-fit measure can, of course, be
calculated no matter what method—e.g. maximum likeli-
hood—has been used to estimate the parameters. The
maximum likelihood (ML) method, while asymptotically
efficient under the Poisson assumption, does not imply
maximization of R}y, (or R%)—only weighted least squares
(WLS) does. The ML method does, however, implicitly
take account of the heteroskedasticity, and is therefore
unlikely to yield very different results from WLS, except
when small values of A; predominate in the sample. In
such cases the Poisson distribution is heavily skewed,
since the range of possible values does not extend below
zero. For large As, on the other hand, the Poisson distribu-
tion is approximately normal (Gaussian), in which case
WLS is asymptotically efficient and hence almost equiva-
lent to ML (although not algebraically identical).

Note that, because of the weights 1/§;, the denomina-
tors of R%,, P}, and R}y are not invariant under different
mode] specifications. They are sensitive to the choice of
model for estimating $;, especially when the expected
values are small, in which case even minor errors of esti-
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mation would tend to be inflated through the application
of the prescribed weights.

One way to approximate the Poisson to a normal
distribution, for small as well as for large values of A, is
by means of the Freeman-Tukey transformation (1950).
This transformation is the basis for our third goodness-
of-fit measure.

A.3. The Freeman-Tukey R®

Freeman and Tukey (1950) suggested the following
variance stabilizing transformation of a Poisson variable
y; with mean A;:

fi=Vy+Vy+ 1L ©)

This statistic is approximately normally distributed with
mean

¢ = Var + 1 (10)

and unit variance. In other words, the Freeman-Tukey
deviates

e=fi— o 1

have an approximate, standard normal distribution. We
estimate these deviates by the corresponding residuals

&="Vy+ Vy +1- Vg + 1. 12)

An R? goodness-of-fit measure for the Freeman-
Tukey transformed variables is

3 .82
Rl 13
PTG 1)

Since the Freeman-Tukey deviates have variance one, the
maximally obtainable fit in a perfect Poisson model is

n
—_——, (14)
-7
and the Freeman-Tukey goodness-of-fit measure for sys-
tematic variation, analogous to R} and R}y, is
Rh _S(i-Pi-%é
Py S(fi-fr-n’

P%F=l

(15)

1
Rprr=

A.4. The Elvik index

Recall the generalization of the Poisson regression
model, developed by Gourieroux, Monfort, and Trognon
(1984a, b), according to which the Poisson parameter is
itself considered random and drawn from a gamma distri-
bution with mean u; and shape parameter £ = 1/6 (say). In
this case the y, variable can be shown to follow a negative
binomial distribution with mean g, and variance

of =pll +8u). (16)

We can interpret # as an overdispersion parameter,
indicating a larger empirical variance than the normal ran-
dom disturbance in a perfectly specified Poisson model,
where we would have 8 = 0. The higher the overdispersion
parameter is, the less systematic variance is actually ex-
plained by the model.

Rune Elvik (personal communication) has suggested

to us a way to exploit this fact in order to define a relative
measure of explained variance. Given that a given com-
pound gamma-Poisson model (named m, say) has been
estimated (by ML or a variant thereof), one computes the
individual variance estimates

@ME=37(1+6m97 amn
and their sum
B =557+ 0mEM = AT+ PGP (8

Let model 0 be the very simplest model estimable,
i.e. one with only a constant term and no explanatory,
independent variables. In this model the overdispersion
parameter (89, say) will be larger than in any other
model—so large, in fact, that it reflects all the systematic
variation there is in the sample. The fitted values $; will,
however, be all equal in this model, and obviously very
biased estimates of the individual expected values ;. The
sample variance of the y; will be zero.

To define a vardstick for overdispersion in a gamma-
Poisson model, one must therefore choose one fairly trust-
worthy reference model (i.e. one that makes theoretical
sense and exhibits a very small amount of overdispersion),
and compute

E% =3,9% + B S,(31) = A* + 0°SGF7, (19)

where the §7 denote the fitted values of the reference
model, i.¢. our best estimates of the true expected values
w; (ideally, the true values themselves should have been

used).
To judge model m against this yardstick, compute

™ = 3,9 + 0mE(9FP, (20)

the total amount of dispersion in model m, and the relative
measure

m* éO - ém Ei A,gk 2
rR=1-Z- (A—r)—’(l")" @n
B Ax+8z ()

‘ where we have defined

At=35r=€") . 22
M=

We shall refer to RE as the Elvik index. A* denotes
the sum of expected values under the reference model,
which we interpret as the minimum amount of dispersion
E"‘*, consistent with a zero value of ™. In other words,
A* represents the random noise part of the total variation,
while the overdispersion present in a given model m is
represented by the second term 6™ PGV LN

In the special case #” =0 (no overdispersion), the
Elvik index degenerates into

Pi=1-—, (23)

which is the best fit that one could possibly hope to achieve
in a Poisson model.
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Now, by analogy to R}, an Elvik index disregarding
the normal amount of random noise can be defined by

Ry EY —E™ (@ -83(3)

Rbp=—f = .
e P37

Pi- Eom _ f\* - (24)

A.5. The likelihood ratio goodness-of-fit statistic
Let L™ denote the (maximized) likelihood under
model m, and let m and g denote two models (parameter
spaces) such that m is a special case of g (i. e. the parame-
ter space under m is contained in that of model g). Assume,
as our null hypothesis, that model m is the true model.
Then it can be shown (see, e.g. Bickel and Doksum 1977),
that, under fairly general conditions (covering the Poisson
and negative binomial cases), the likelihood ratio statistic

=21In (L"/L) = GXm, q) (say) (25)

is asymptotically chi-square distributed with & ~ &9 de-
grees of freedom, &’ being the number of parameters under
model i. We can use this fact to test model m versus the
alternative g.

The most general alternative against which to test is
the so-called full (saturated) model—f, say—in which
there are as many parameters as there are observations
(no degrees of freedom), yielding a perfect fit to the data.
To test against this model one computes

-2In(L"/Lf) = D" (say), (26)

which is recognized as the ‘‘scaled deviance” measure
commonly rzferred to within the framework of the general-
ized linear mr.odels (GLM) of McCullagh and Nelder (1983).
Under model m, D™ has an asymptotic chi-square distribu-
tion with n — k™ degrees of freedom.

In the case of Poisson models, the log-likelihood un-
der model m takes the form of

InL™ =3[y Ing" ~ 7 — In(yNl. Qn
Under the full model (f), we have $; = y;, so that
D7 =23 [ yin(y,/M] - 2G5y — 2,57, (28)

where the latter term is quite small provided model m
contains a constant term.

For the more general negative binomial specification,
we have (see e.g. Cameron and Trivedi 1986)

InL” =5, {In Ty, + 1/8) — InT(1/8) — In(y,)) = (1/8) In(1 + B9
+ y;In[637/(1 + 69M1}. (29

As @ approaches zero, the underlying gamma distribu-
tion becomes degenerate, and the negative binomial likeli-
hood converges to the Poisson.

Now, let D® denote the scaled deviance of the zero
model, i.e. the one with only a constant term and an
overdispersion parameter. This deviance incorporates lit-
erally all the variation present in the sample. An intuitively
obvious way to measure explanatory power would be to
relate the scaled deviance of any given model m to that
of the zero model:

_D"(n~ k" - 1)

=1~ ==

_Dn-2-D"n-k"-1)
Dl(n~2) ‘

(30

where the deviances are always measured in terms of their
degrees of freedom. (For comparability with the Poisson
model, we denote by k™ the number of parameters in
addition to 9.)

Now, under the hypothesis that model m explains all
systematic variation, 8 equals zero, the Poisson likelihood
applies, and the expected value of the deviance is given
by

E(D™) =2 EZ{yIn (y/\) ~ (y; — W)}
=2 Z{Ely;In(y)] = Ml ()) GD

There is, to our knowledge, no closed form solution
to this expression. We have, however, proceeded to com-
pute Ely In(y)] for a range of values of A (¢72 < A < ¢9),
and fitted a 12th degree polynomial in A, given by

6
Elyln(y)] = MIn) =3 BiM+s (32)
k=Z6

(A= e 0 1=0,1,2,...,160). As A, grows, the differ-
ence on the left-hand side approaches one half. In a data
set with only large values of X, the expected value E(D™)
converges, therefore, to n—the sample size. For small
values of A (A < .5, approximately), however, the differ-
ence is less than one half, while it is larger than one half
for moderate values of A above .5 (see graph by Maycock
and Hall (1984, p 61)).*

Now, to purge the deviance of its expected random
noise, we estimate E(D™) by substituting the fitted values
yf for the true Poisson parameters in eqs (31) and (32),
define

DE/(n — k™)

D'o /'('n' ) (33)

Ph=1-

and compute (following Kulmala 1991)

R} DYn-2)-Dn—k™-1)
1 =D 3
Rep Py DY(n-2)-Dlm—-km™) G4

where DZ = E(D™)
A=F

A.6. Empirical results

The empirical results obtained by applying these mea-
sures to our data set have been presented, in broad terms,
in section 5 of the main text (see Figs. 1 through 3).

In the models for injury accidents, the ordinary R?
measure comes out with values ranging from .62 to .93,
depending on the data set (country) and the model specifi-
cation (i.e. disregarding the models with only a constant
term). The weighted R* measures range from .72 to .96,
the Freeman-Tukey R? from .66 to .93, the crude Elvik
index from .68 to .94, and the deviance (log-likelihood)
R? from .66 to .93. By and large, the range of variation is
remarkably similar among the five measures.

*Users of the GLIM computer software may calculate an
estimate of E(D™), as given by eqn (31), by using the fitted values
9, as estimates of the Poisson parameters A;, and summing over
all possible values of y; (see Maycock and Hall 1984). This method
is especially useful when the value of the Poisson parameter (the
expected number of accidents) is low, i.e. when the possible
values of y, range from zero to 20-30.
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The optimal fit, as expressed in terms of the corre-
sponding P? measures, are in all cases found to be between
.91 and .98, meaning that no matter how well we specify
the model, an inexplicable random disturbance component
of at least 2% to 9% of the total variation is to be foreseen.
This random component is markedly larger in Norway
than in the other three countries, simply because the Nor-
wegian units of observation (counties) are smaller (i.e.
have fewer casualties on the average), leaving relatively
more room for purely random variation.

When we purge the goodness-of-fit measures of this
normal amount of purely random noise, measures ranging
from .68 to .99 are found. According to the R} measure,
the share of explained systematic variation varies between
.68 and .97. The R}y, measure varies between .77 and .99,
Rber between .72 and .98, R}z between .73 and .98, and
the log-likelihood goodness-of-fit measure R}, between
.72 and .98. Again, for one and the same model and data
set, the measures—especially the three latter ones—are
remarkably similar. In general, the R} measure comes out
somewhat smaller than the rest, while the R}, measure
seems to exaggerate the fit slightly, compared to the other
four measures. The Freeman-Tukey R?, the Elvik index,
and the scaled deviance (log-likelihood) R? appear to be,
for all practical purposes, almost equivalent measures of
fit.

As we turn our attention to the models for fatal acci-
dents, interesting similarities and dissimilarities (with re-
spect to the injury accident models) can be observed. The
crude R? measures (i.e. R%, R¥, Rkr, R}, and R}) are as
low as .09 to .12 for Norway, and between .21 and .30
for Denmark and Sweden. This is, however, mainly a
reflection of the fact that fatal accidents are less frequent
events, leaving relatively more scope for purely random
variation. Thus, the optimal (or best obtainable) fit, as
witnessed by the P? measures, is of the order of 18% to
23% for Norway, and around 40% to 45% for the Danish
and Swedish data sets. The share of explained systematic
variation (R}, say) is therefore similar to the level found
for injury accidents. The models F4, e.g. explain 71% of
the systematic variation in Denmark, 81% in Norway, and
88% in Sweden, versus 87%, 84%, and 90%, respectively,
for the corresponding models (I4) for injury accidents.

Again, the five sets of goodness-of-fit measures
considered are seen to yield fairly similar results, al-
though, as for injury accidents, the measures based on
the weighted R? are on the high side, while those based
on the ordinary R? come out rather low. The measures
based on the Elvik index are generally very similar to
those derived from the log-likelihood. The P} measure
has the undesirable feature of being strongly model
dependent, an instability that carries over even to the
R}y, measure.

Finally, the models for road users killed are seen
to explain a strikingly smaller share of the systematic
variation than the corresponding models for fatal acci-

dents, despite the fact that the two casualty counts are
very strongly correlated, being identical in many cases.
This, however, serves to illustrate the importance of inde-
pendence between events. For events that are not probabi-
listically independent, the Poisson probability model is
obviously less well founded. In this case, a considerable
amount of overdispersion must always be expected, trans-
lating into a less than perfect fit even after we correct for
a normal amount of random Poisson disturbance.

A.7. Synthesis

While, according to traditional measures of goodness-
of-fit, our fatal accident models would appear to be very
much inferior to the injury accident models, such is not
the case when due account is taken of the unequal sizes
of the normal random variation in the two cases. This, in
our view, illustrates the usefulness of the goodness-of-fit
measures developed here. By leaving out the inexplicable
from the unexplained variation, one can compute good-
ness-of-fit measures that are just about equally informative
no matter how frequent or rare the events being analyzed.
Put otherwise, these measures are able to tell the analyst
how far he/she is from explaining all the explicable (sys-
tematic) variation there is.

Five measures of explained systematic variation have
been considered, of which the one based on the log-likeli-
hood statistic (R3) would appear to be the most ‘‘natural”
choice, in particular when Poisson or negative binomial
maximum likelihood is the method of estimation used.
Unlike the other measures, however, the R} measure is
not straightforward to compute, as it depends on the un-
known quantity E[y; In (y)] (where y; ~ P(\))), whose
value must be evaluated for each unit of observation, and
summed through the sample. In contrast, the R}, Rpy,
and R}z, measures depend only on the first and second
order moments of the observed and fitted values of the
dependent variable, or of simple transformations thereof.
The Elvik measure R}z is equally simple to compute,
although one drawback about this measure is the need to
choose and estimate a trustworthy reference model, the
fitted values of which must be assumed, with negligible
error, to coincide with the true expected values of the
dependent variable. This choice of reference model is, of
course, ultimately arbitrary. )

As a shortcut method to assess the amount of
explained systematic variation, we would recommend
the Elvik measure R}z, except in situations where a
trustworthy reference model cannot be found. In such
cases, the Freeman-Tukey measure R}z; is a commend-
able, robust alternative. We advise against using the
weighted R? measures R}, P}, and R}y, as these
measures tend to inflate estimation errors affecting the
smallest predicted values, and are not invariant with
respect to the choice of reference model used to compute
normal Poisson disturbances.
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